Please use this identifier to cite or link to this item: `http://hdl.handle.net/11455/14843`
 標題: 不同降雨延時作用下滯洪水理特性之數值演算與試驗驗證Numerical Routing and Experimental Verification of Detention Pond for Different Rainfall Durations 作者: 吳傳偉Wu, Chuan-Wei 關鍵字: detention pond;滯洪池;hydrology continuity equation;inflow hydrograph;storage volume;水文連續方程;入流歷線;滯洪容積 出版社: 土木工程學系 摘要: 摘 要 土地開發的行為導致地表逕流係數增大，對下游地區而言，暴雨來襲時，將會需要承受比開發前更大的洪水災害，因此需設置滯洪設施利用有限滯洪容積以達消減與遲滯洪峰為目的。本研究推導滯洪水文模式，配合數值演算，探討不同降雨延時之三角形、梯形入流歷線，作用於矩形溢流口與孔口出流口形式之滯洪水理特性，並藉由渠槽試驗驗證之，研究結果獲致以下成果： 1.以水文連續方程（3-3）式為數值演算基礎，搭配Runge-Kutta法演算流經滯洪設施之水理現象，獲致三角形與梯形入流歷線之控制方程為（3-19）~（3-22）式，經本研究的渠槽試驗驗證下，不論入流歷線型態或出流口之差異，兩者獲致相當吻合的結果，足以佐證數值模擬的可行性與準確性。 2.消減尖峰流量為滯洪設施之設計指標，研究中獲致三角形入流歷線於矩形溢流口與孔口之洪峰消減度κ之經驗關係為（5-5）與（5-6）式；而梯形者為（5-8）與（5-9）式。另外，對於洪峰稽延時間Ts與無因次尖峰流量Qop/Qip之關係參酌圖5-16與圖5-30，顯示當入流歷線呈三角形者其Qop/Qip值越小時，Ts值會越大之趨勢較明顯，而Qop/Qip值等於1時，梯形者之Ts皆大於0，表示洪峰雖無消減，但可延長尖峰到達時間。 3.探討梯形、三角形入流歷線之滯洪容積差異，由圖5-17、圖5-20、圖5-31與圖5-34，顯示梯形入流歷線洪水體積相對比三角形者為大，因此需要更大的滯洪容積與校小的開口尺寸，才能予以遲滯。同時，顯示矩形溢流口之出流口設計比矩形孔口者需要較大滯洪容積，即矩形孔口式出流口有較好的滯洪效應。Abstract Land development is known to cause a large coefficient of surface runoff. When rainfall happens, more floods occur downstream than upstream. A detention pond must be constructed to reduce the peak time and peak discharge by making use of storage volume. This study utilizes detention pond experiments to verify that the numerical routing of continuity equation, and discusses the hydrology characteristics of detention with triangle or trapezoid inflow hydrograph by using a rectangular spillway and an orifice outlet. The results of this study are outlined as follows: 1.The foundation of numerical routing is the hydrology continuity equation (3-3). By using the Runge-Kutta method, we can calculate the governing equations (3-19) ~ (3-22) of triangle and trapezoid inflow hydrology. The verification of detention experiments shows us that the outflow hydrology is close to numerical result no matter what kind of outlet is used. It shows that the continuity equation can accurately simulate the characteristics of a detention pond. 2.In this research, the experience formulas for peak reduction κ are (5-5) and (5-6) with triangle hydrology and formulas (5-8) and (5-9) representing trapezoid hydrograph. In addition, figs.5-16 and 5-30 show the relationship between dimensionless peak lag time Ts and peak outflow Qop/Qip. The value of Ts is less when Qop/Qip is larger under the triangle inflow hydrograph. Under the trapezoid inflow hydrograph, Ts is larger than 0 when the value of Qop/Qip is equal to 1. It means although peak discharge can't be reduced, peak time can lag. 3.Figures 5-17, 5-20, 5-31, 5-34 show the differences of storage volume between triangle inflow hydrographs and trapezoid inflow hydrographs. The detention of trapezoid hydrograph needs larger storage volumes and less size of an outlet than the triangle hydrograph. In addition, the storage volume for the orifice is less than the spillway; this means the outlet for the rectangular orifice has a better detention effect. URI: http://hdl.handle.net/11455/14843 Appears in Collections: 土木工程學系所

TAIR Related Article

Check