Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14922
DC FieldValueLanguage
dc.contributor.advisor陳正炎zh_TW
dc.contributor.advisorJen-Yan Chenen_US
dc.contributor.author洪耀明zh_TW
dc.contributor.authorHong, Yao-Mingen_US
dc.date2002zh_TW
dc.date.accessioned2014-06-06T06:53:16Z-
dc.date.available2014-06-06T06:53:16Z-
dc.identifier.urihttp://hdl.handle.net/11455/14922-
dc.description.abstract台灣山區坡陡流急,夏秋之際多颱風豪雨,常帶來嚴重之坡地災害,同時地狹人稠,山坡地開發為必然之趨勢。但坡地開發常使地表覆蓋減少及不透水面積增加,導致雨水入滲率減低及地表逕流量增加;而開發過程中大量的土石方挖填工程,又經常造成大量泥沙流失。為避免因坡地開發造成基地與基地下游地區之洪水與泥砂災害,需運用滯洪沈砂池處理開發後所造成逕流量變大及泥砂產量增加等問題。因此,本研究旨在解析滯洪池之相關設計問題,提出設計滯洪池之方法。 本文首先收集各種常見計算滯洪容積之簡化模式,經由歸納與解析,訂定完整的比較與計算方法,並發現採用梯形入流及三角形出流歷線之滯洪容積最大,而出流若採用特殊設計,如洪水一開始便抽水之梯形出流時,可有效減少滯洪容積,使滯洪池所需體積變小;隨後考量洪水流經滯洪池之水理現象,並以適當的滯洪池入流歷線、滯洪體積與高程關係及出流口流量公式代入水文連續方程式,藉以數值方法求解,發展一套水理計算模式。同時,配合滯洪池定量流與變量流試驗驗證,證實本水理模式能夠描述洪水流經滯洪池之過程。經由試驗與數值方法計算,證明矩形孔口式出流口之滯洪容積均較矩形溢流口式為小;近似三角形入流歷線之退水時間除以洪峰到達時間比值越大,洪水遲滯時間越久;而梯形入流歷線中,洪峰持續時間越久會使洪水遲滯時間越長。 本研究之另一重點為提供一簡便但符合上述水理模式的計算方法,因此發展出圖解法及攝動解法。圖解法係經由歸納影響滯洪容積之相關因素,利用內插法原理建立相關圖表,經由查圖即可計算滯洪容積;攝動解法則採攝動法求出水文連續方程式之近似解,並以曲線擬合方式減少誤差;上述方法均經數值解之驗證相當吻合,希望能提供設計與應用之參考。zh_TW
dc.description.abstractDuring the rainy season in Taiwan, mud slides and heavy floods often occur. Steep mountains and hillsides aid this dangerous phenomenon. The hillslope development is necessary to protect the growing population and the amount of livable land that is reducing. As land cover decreases and impervious area increases, the infiltration rate will reduce and add to the overland flow rate. An extremely high amount of sediment runoff comes from earthwork and bare land. Using detention facilities to control storm water runoff and the sediment outflow rate will avoid such adverse downstream effects. The purpose of this study is to analyze the detention pond design problem, and to propose a complete design method. This study collected many simplified models for a start. By using inductive reasoning and complete comparisons, a method for calculating the detention pond was concluded. Detention volume was found to be the biggest for trapezoidal inflow and triangular outflow. A special design, such as pumping water after runoff beginning, can reduce detention volume. Moreover, a numerical hydrological model is developed after considering the hydraulic phenomena of the detention pond in which the inflow/outflow hydrograph and the storage-elevation relationship is analyzed carefully. This hydrological model also uses many steady/unsteady flow tests of detention pond experiments to verify this model can make a good simulation. By utilizing numerical calculation and experimentation, the detention volume of the rectangular orifice was determined to be smaller than the volume of the rectangular spillway; therefore the large ratio between recession time dividing peak time of the triangular inflow, and longer peak inflow time duration of trapezoidal inflow makes the delay time longer. The second aim of this study was to propose easy calculation methods that can fit the above hydrological model. The graphical and perturbation methods were developed. After concluding the experiments and using the intersection method from established correlated graphs, the detention volume can be calculated. The perturbation method can calculate the approximate solutions for the hydrological continuity equation. The curve fitting method is adopted to reduce the error of calculation. The above methods were checked by the numerical solution, and can give some suggestions and applications for designers.en_US
dc.description.tableofcontents中文摘要 I 英文摘要……………………………………………………. II 目錄…………………………………………………………. III 圖目錄………………………………………………………. VII 表目錄………………………………………………………. XII 照片目錄……………………………………………………. XIII 附圖目錄 XIV 符號說明 ……………………………………………………. XVII 第一章 緒論……………………………………………. ..1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-2-1 概念性模式 2 1-2-2 數值計算模式 7 1-2-3 數學解析模式 8 1-2-4 出流口實驗相關研究 10 1-2-5 現場資料相關研究 18 1-3 本文組織 19 第二章 滯洪演算方法 21 2-1 概念性模式之整理與解析 21 2-1-1 入流歷線之形成 21 2-1-2 三角形入流歷線之滯洪容積 24 2-1-3 梯形入流歷線之滯洪容積 26 2-1-4 洪峰遲滯時間之比較 30 2-2 水理模式之理論整理與解析 33 2-2-1 入流歷線形式 33 2-2-2 出流口流量公式 38 2-2-3 滯洪容積函數 41 2-2-4 連續方程式建立 42 2-2-5 無因次連續方程式建立 45 2-3 水文連續方程式之數值解 48 2-3-1 朗奇-庫塔(Runge-Kutta)數值方法 48 2-3-2 水面面積公式 49 2-3-3 數值滯洪演算流程 54 2-4 實例演算 55 2-4-1 實例演算地區水文資料整理 55 2-4-2 概念性模式之滯洪容積 57 2-4-3 不同概念性模式滯洪容積比較 61 2-4-4 水理模式之滯洪容積 62 2-4-5 水理模式與概念模式滯洪容積之比較 70 2-5 水土保持技術規範入流歷線之檢討 75 第三章 滯洪水理演算之試驗驗證 78 3-1 試驗設計 78 3-1-1 試驗設備與佈置 78 3-1-2 試驗步驟與條件 85 3-2 定量流試驗結果與討論 87 3-2-1 滯洪池入流口流量公式 87 3-2-2 矩形溢流式出流口流量係數 91 3-2-3 矩形孔口式出流口流量係數 97 3-3 變量流試驗結果與討論 105 3-3-1 矩形溢流口式出流口試驗成果 105 3-3-2 矩形孔口式出流口試驗成果 110 3-3-3 變量流試驗綜合討論 116 第四章 滯洪容積演算之圖解法 121 4-1 台灣地區滯洪池設計資料之整理與分析 121 4-2 三角形入流歷線滯洪演算特例圖解 122 4-2-1 特例圖解法理論與圖表建立 124 4-2-2 特例圖解法之實例應用 125 4-3 二參數之三角形入流歷線滯洪演算圖解法 126 4-3-1 二參數圖解法理論( 及 ) 126 4-3-2 內插法之圖解應用 127 4-3-3 二參數圖解法之實例應用 134 4-4 三參數之三角形入流歷線滯洪演算圖解法 142 4-4-1 三參數圖解法理論( ) 142 4-4-2 三參數之圖解法實例應用 143 4-4-3 三角形入流歷線滯洪演算圖解法之比較 155 4-5 二參數之梯形入流歷線滯洪演算圖解法 156 4-5-1 二參數圖解法理論( 及 ) 156 4-5-2 內插法之圖解應用 157 4-5-3 二參數圖解法之實例應用 158 第五章 滯洪容積演算之攝動法 160 5-1 三角形入流歷線滯洪演算之攝動解 160 5-1-1 攝動解理論推導 160 5-1-2 攝動解與數值解比較及誤差修正 168 5-1-3 實例演算 174 5-2 梯形入流歷線滯洪演算之攝動解 176 5-2-1 攝動解理論推導 176 5-2-2 攝動解與數值解比較及誤差修正 182 5-2-3 實例演算 187 5-3 攝動法成果比較與討論 190 5-3-1 實例演算成果比較 190 5-3-2 攝動法研究成果 190 第六章 結論與建議 192 6-1 結論 192 6-2 建議 195 參考文獻 196 附錄 附圖A 三角形入流及矩形溢流口試驗成果圖 201 附圖B 梯形入流及矩形溢流口試驗成果圖 211 附圖C 三角形入流及孔口型出流口試驗成果圖 221 附圖D 梯形入流及孔口型出流口試驗成果圖 234zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系zh_TW
dc.subjectdetention ponden_US
dc.subject滯洪池zh_TW
dc.subjecthydrological continuity equationen_US
dc.subjectperturbation methoden_US
dc.subjectnumerical methoden_US
dc.subjectunsteady flowen_US
dc.subjectdischarge formulaen_US
dc.subject水文連續方程式zh_TW
dc.subject攝動解法zh_TW
dc.subject數值方法zh_TW
dc.subject變量流zh_TW
dc.subject流量公式zh_TW
dc.title滯洪池水文演算模式之研究zh_TW
dc.titleStudy of Hydrological Routing Models for Detention Ponden_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextno fulltext-
Appears in Collections:土木工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.