Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1503
標題: 奈米流道非線性電流-電壓特性之參數探討
Parametric Studies on the Nonlinear Current-Voltage Characteristics in Nanoscale Channels
作者: 蔡嶸華
Tsat, Jung-Hua
關鍵字: nanochannel and microchannel;奈米流道與微米流道
出版社: 機械工程學系所
引用: 【1】R. Karnik, R. Fan, M. Yue, D. Li, P. Yang, A.Majumdar, Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5 (2005) 943-948. 【2】 R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics. Rev. Mod. Phys. 80 (2008) 839-871. 【3】 Y. Wang, K. Pant, Z. J. Chen, Z, G. Wang, W. F Diffey, P. Ashley, S. Sundaram, Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow. Microfluid Nanofluid 7 (2009) 683–696. 【4】A. Plecis, R.B. Schoch, P. Renaud, Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 5 (2005) 1147-1155. 【5】J. Cervera, B. Schiedt, S. Mafe, Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. J. Chem. Phys. 126 (2007) 194703. 【6】I. Vlassiouk, S. Smirnov, Z. Siwy, Ion selective of single nanochannels. Nano Lett. 8 (2008) 1978-1985. 【7】I. Rubinstein, B. Zaltzman, Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 62 (2000) 2238-2251. 【8】G. Yossifon, P. Mushenheim, C.Y. Chen, H.C Chang Nonlinear current-voltage characteristics of nanochannels. Phys. Rev. E 79 (2009) 046305. 【9】H. Daiguji, P. Yang, A. Majumdar, Ion transport in nanofluidic channels. Nano Lett. 4 (2004) 137-142. 【10】C. Wei, J. Allen, Rectification at quartz nanopipet electrodes. Anal. Chem. 69 (1997) 4627-4633. 【11】Z. Swiy, Ion-current rectification in naotubes with broken symmetry. Advanced Functional Material 16 (2006) 735-746. 【12】Z. Swiy, A. Fuliski, A nanodevice for rectification and pumping ions. American Journal of Physics 72 (2004) 567-574. 【13】S. Qian, W. Sang, Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores. Journal of Colloid and Interface Science 329 (2009) 376-383. 【14】I. Vlassiouk, S. Smirnov, Z Siwy, Nanofluidic ionic diodes comparison of analytical and numerical solutions. ACS Nano 2 (2008) 1589-1602. 【15】J. Cervera, B. Schiedt, P. Ramirez, A Poisson/Nernst-Planck model for ionic transport though synthetic conical nanopores. Europhy Lett. 71 (2005) 35-41. 【16】H. White, A. Bunds, Ion current rectification at nanopores in glass membranes. Langmuir 24 (2008) 2212-2218. 【17】D. Woermann, Analysis of non-Ohmic electrical current–voltage characteristic of membranes carrying a single track-etched conical poreNucl. Instrum. Methods B 194 (2002) 458-462. 【18】D. Woermann, Electrochemical transport properties of a cone-shaped nanopore:high and low electrical conductivity states depending on the sign of an applied electrical potential difference. Phys. Chem. Chem. Phys. 5 (2003) 1853-1858. 【19】D. Woermann, Electrochemical transport properties of a cone-shaped nanopore: revisited. Phys. Chem. Chem. Phys. 6 (2004) 3130-3132. 【20】A. Alcaraz, P. Ramirez, G.G. Elena, M.L. Lopez, A. Andrio, M. Vicente, A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted Single ion channel. J. Phys. Chem. B 110 (2006) 21205-21209. 【21】M.L. Kovarik, K. Zhou, Effect of conical nanopore diameter on ion current rectification. J. Phys. Chem. B 113 (2009) 15960-15966. 【22】 M. Ralph, M. Smeets, F. Ulrich, D. Krapf, M.Y. Wu, H. Nynke., C. Dekker, Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6 (2006) 89-95. 【23】 R. Schoch, P. Renaud, Ion transport through naoslits dominated by the effective surface chage. Applied Physics Lett. 86 (2005) 253111. 【24】Y. Ben, H. Chang, Nonlinear Smoluchowski slip velocity and micro-vortex generation. J. Fluid Mech. 461 (2002) 229-238. 【25】H.C. Chang, G. Yossifon, Understanding electrokinetics at the nanoscale: a perspective. biomicrofluidics 3 (2009) 012001. 【26】G. Yossifon, Y.C. Chang, H.C. Chang, Rectification, gating voltage and interchannel communication of nanoslot. Phys. Rev. E 103 (2009) 154502. 【27】 T. Postler, Z. Slouka, M. Svoboda, M. Pribyl, D. Snita, Parametrical studies of electroosmotic transport characteristics in submicrometer channels. Journal of Colloid and Interface Science 320 (2008) 321-332.
摘要: 
本研究的目的在於研究離子在奈米流道中傳輸的特性。首先探討奈米流道外接儲槽對離子傳輸之影響,及流經奈米流道之電流與外加電壓間之關係(I-V曲線),發現奈米流道外接不同的儲槽並不影響離子在奈米流道中傳輸的特性,其I-V曲線並無很大之差別。根據此結論,本研究延伸至不同參數如電壓、流道尺度、電解液整體濃度、奈米流道壁面電荷密度等對I-V曲線之影響。
本研究發現在非均勻和線性分佈的壁面電荷密度的奈米流道中,兩者都能產生類似於MOS-FETs場效應電晶體的電流放大效應。在低電位時,放大效應較不顯著;反之高電壓時顯示電流放大效應相對的顯著。在固定的電解液濃度下,階梯式的壁面電荷密度分佈比起線性的壁面電荷密度分佈所產生的電流放大效應來得明顯。本研究發現當電雙層產生重疊之奈米流道系統也會造成電流放大效應。利用所得之I-V曲線,本研究進一步探討奈米流道之電導特性。研究發現當外加電壓提高時,出現飽和之電導之情形會在較高的電解液濃度下發生。當不考慮流體流動時的電導分佈,則異於考慮流體流動的電導分佈。

The ionic transport characteristics through nanochannels are examined numerically in this study. The coupled Navier-Stokes equation for the fluid flow, Poisson equation for the electric potential distribution, and the extended Nernst-Planck equation for the species transport are solved. This study particularly focus on the relationship between the current passing through the nanochannel and the externally applied voltage (I-V curve), including the Ohmic current, limiting current, and over-limiting current regimes.

The study first aims to clarify the effect of the microchannel or reservoirs that connected at the ends of the nannochannel on the I-V curve. Based on the results reported in this study, it was found that when the microchannel size is large, the I-V curves have no significant difference from the case with nanochannel connected with reservoirs. Secondly, this study examines the effect of the overall size of the nanochannel-microchannel junction on the I-V curve under the same nanochannel surface charge density and non-dimensional applied voltage. It was found that there was no significant difference in I-V curves in the Ohmic current regime for the three nanochannel-microchannel junction size studied. However, the I-V curve depends on the nanochannel-microchannel junction size in the limiting current, and over-limiting current regimes.

With the surface charge density varied along the nanochannel wall, the current rectification through the nanochannel was examined. It was found that the ionic current rectification depends greatly on the electrolyte bulk concentrations and the applied externally voltages. With low bulk electrolyte concentration and applied voltage in the over-limiting current regime, significant ionic current rectification can be found.
URI: http://hdl.handle.net/11455/1503
其他識別: U0005-0208201109500800
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.