Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1517
標題: 金屬面銑削之切削力與表面形貌相關性研究
An Investigation on the Correlation between Cutting Force and Surface Profile in Face Milling of Metals
作者: 張世餘
Chang, Shih-Yu
關鍵字: cutting force;切削力;surface profile;correlation coefficient;表面形貌;相關係數
出版社: 機械工程學系所
引用: 1. G. F. Boothroyd and W. Knight, Fundamentals of Metal Machining and Machine Tools, 2nd Edition, McGraw Hill, 1989. 2. E. Budak, Y. Altintas and E. J. A. Armarego, “Prediction of Milling Force Coefficients from Orthogonal Cutting Data,” ASME Journal of Manufacturing Science and Engineering, Vol.118, pp.216-224, 1996. 3. J. D. Kim, E. B. Lee and D. H. Hyun, “A Study on the Modeling of Tool Motion and High-Accuracy Surface Generation by the Use of Cutting-force Signals,” Journal of Materials Processing Technology, Vol.47, pp.45-62, 1994. 4. R. I. King, Handbook of High-Speed Machining Technology, Chapman and Hall, New York, 1985. 5. W. A. Kline, R. E. DeVor and I. A .Snareef, “The Prediction of Surface Accuracy in End Milling,” Journal of Engineering for Industry, Vol.104, pp.272-278, 1982. 6. F. Koenigsberger and J. A. P. Sabberwal, “An Investigation into the Cutting Force Pulsations during Milling Operations,” International Journal of Machine Tool Design and Research, Vol.1, pp.15-33, 1961. 7. S. Jayaram, S. G. Kapoor and R. E. DeVor, “Estimation of the Specific Cutting Pressures for Mechanistic Cutting Force Models,” International Journal of Machine Tools and Manufacture, Vol.41, pp.265-281, 2001. 8. S. C. Lin and R. J. Lin, “Tool Wear Monitoring in Face Milling Using Force Signals,” Wear, Vol. 198, pp.136-142, 1996. 9. S. C. Lin and R. J. Yang, “Force-Based Model for Tool Wear Monitoring in Face Milling,” International Journal of Machine Tools and Manufacture, Vol.35, No.9, pp.1201-1211, 1995. 10. M. E. Martellotti, “An Analysis of the Milling Process,” Transactions of the ASME, Vol. 63, pp 677-700, 1941. 11. S. N. Melkote and W. J. Endres, “The Importance of Including Size Effect when Modeling Slot End Milling,” ASME Journal of Manufacturing. Science and Engineering, Vol.120, pp.68-75; 1998. 12. D. E. Newland, An Introduction to Random Vibrations and Spectral Analysis, Longman, New York. 1975. 13. J. P. Sabberwal, “Chip Section and Cutting Force during the Milling Operation,” Annals of the CIRP, Vol.10, pp.197-203, 1961. 14. M. C. Shaw, Metal Cutting Principles, Oxford University Press, New York, 1991. 15. S. Smith and J. Tlusty, “An Overview of Modeling and Simulation of The Milling Process,” Journal of Engineering for Industry, Vol.113, pp.169-175, 1991. 16. J. Tlusty and P. MacNeil, “Dynamics of Cutting Forces in End Milling,” Annals of the CIRP, Vol.24, pp.21-25, 1975. 17. J. J. Wang, “Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification,” Ph. D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, 1992. 18. J. J. Wang and S. Y. Liang and J. W. Book, “Convolution Analysis of Milling Force Pulsation,” ASME Journal of Engineering for Industry, Vol.116, pp.17-25, 1994. 19. J. J. Wang and C .M. Zheng, “An Analytical Force Model with Shearing and Ploughing Mechanisms for End Milling,” Journal of Machinetools and Manufacture, Vol.42, pp.761-771, 2002. 20. L. Zheng, Y. Li and S. Y. Liang, “A Generalized Model of Milling Forces,” International Journal of Advanced Manufacturing Technology, Vol.14, pp.160-171, 1998. 21. 劉偉均,切削加工學,東華書局,1989年。 22. 黎文明,快速傅立葉變換,復漢出版社,1991年。 23. 劉鶴崗,高速端銑削模具鋼之現象分析,臺灣大學機械工程學研究所碩士論文,1999年。 24. 林惠玲、陳正倉合著,統計學方法與應用(上),雙葉書廊有限公司,1999年。 25. 陳永正,6061鋁合金之高速銑削行為與實驗探討,國立中興大學機械工程學研究所碩士論文,1999年。 26. 蒙以正,以MATLAB透視DSP,碁峰資訊公司,1999年。 27. 洪敬祥,面銑削加工參數預測模式之建立,屏東科技大學機械工程系碩士論文,1999年。 28. 黃仁明,“聚晶鑽石面銑刀銑削鋁合金表面粗糙度預測模式之研究”,中國機械工程學會第十七屆學術研討會論文集,第51-57頁,2000年。 29. 蔡志成,“切削表面粗糙度之分析與實驗探討”,機械月刊,第298期,436-443頁,2000年。 30. 陳政雄,“切削加工技術未來發展趨勢”,機械月刊,第298期,444-453頁,2000年。 31. 張煌權,包含側邊及底邊犁切力之端銑及面銑力模式,國立成功大學機械工程學系碩士論文,2000年。 32. 顏家智,高速銑削之應用研究,臺灣大學機械工程學研究所碩士論文,2001年。 33. 謝銘郎,鑽石車削之表面粗糙度探討,國立清華大學動力機械工程學系碩士論文,2001年。 34. 黃增煇,鋼材切削性質評估指標之研究,國立成功大學材料科學及工程學系碩士論文,2002年。 35. 柯凱晉,不同硬度與切速對模具鋼銑削特性影響之研究,國立成功大學機械工程學系碩士論文,2002年。 36. 永大特殊鋼公司模具材料型錄,2002年。 37. 羅華強,訊號處理-MATLAB的應用,全華科技圖書股份有限公司,2003年。 38. SANDVIK刀具型錄,2004年。
摘要: 
銑削加工是金屬材料的主要加工法,而加工後工件的表面形貌是最常被用來評估加工性能的一種指標,然而工件的表面形貌需在加工後才能量測,無法在加工過程即時得知其變化,故需尋求加工時可作為線上即時觀察表面形貌變化的物理量作為依據,本研究針對上述課題,探討金屬面銑加工時銑削力與工件表面形貌之相關性。
研究首先由理論分析金屬面銑加工時之三軸向切削力及切線與徑向切削力之變化與工件加工後之表面形貌變化相關性,顯示在時域(time domain)中除進給方向銑削力外,其他銑削力之半週期變化與表面形貌變化之相關性甚高,相關係數絕對值介於0.92與1.0之間,進給方向銑削力若取四分之一週期分析,其變化與則與表面形貌之變化完全相關,顯示由切削力變化推測表面形貌變化之可行性極高。研究進一步探討將時域訊號以傅利葉轉換轉移至頻域(frequency domain)後再分析其相關性之效果,結果顯示除進給方向銑削力之頻譜與表面形貌之頻譜相關係數約為0.8之外,其他銑削力之頻譜與表面形貌之頻譜相關係數絕對值皆介於0.9至1.0之間,其相關性更為明顯且易於掌握。
本研究進一步規劃實驗以驗證所推導之理論,實驗選擇鋁合金、NAK80模具鋼以及SKD11模具鋼三種不同特性之材料,搭配四種不同進給、四種主軸轉速以及兩種切削深度,探討性質相異的材料在不同的加工條件下本研究所推導之理論的適用性。實驗之時域訊號分析結果顯示,進給方向銑削力之四分之一週期以及其他銑削力之半週期與表面形貌變化之相關係數絕對值介於0.62與0.96之間,相關係數絕對值平均值為0.82;若轉到頻域分析,則銑削力之頻譜與表面形貌變化之頻譜的相關係數介於0.86與0.94之間,顯示利用銑削力變化來推估表面形貌之變化極為可行,且實驗結果與理論推導結果相近,亦驗證理論之適用性。

The surface profile is one of the main indices to evaluate the performance of metal cutting. However, it is difficult to measure in process and therefore always evaluated after machining. It is necessary to investigate other quantitative indices that can be real-time measured and reflect surface profile. While milling process is one of the most common processes for metal cutting and cutting foraces can be measured during machining process, this study focuses on investigating the correlation between the cutting forces and the surface profile in face milling.
Theoretical analyses of the surface profile and the cutting forces for face milling are first investigated. As surface profile is represented in space domain, it is converted into time domain thus correlations between cutting foracescan be analyzed. It showed that the absoluate value of cross correlation coefficients ρ (CCCs) in time domain between the surface profile and the half-cycle of cutting forces, except the cutting force in feeding direction, are between 0.92 and 1.0 that implies a strong correlation. The quarter-cycle of cutting force in feeding direction, however, is fully related to surface profile with ρ=1.0. Further investigation on the correlation in frequency domain showed that CCCs are between 0.9 and 1.0. CCC between surface profile and cutting force in feeding direction is 0.8 in frequency domain. The high CCCs in frequency domain imply strong correlation without trimming signals in time domain.
This study further designs experiments to verify the deductive theory. Various material, including aluminum alloy, NAK80 and SKD11, with four different feedrates, four spindle speeds and two depths of cut are designed and conducted to probe into the suitability of the deductive theory. The results indicate that the CCCs between the cutting forces and the surface profile in time domain are between 0.62 and 0.96 with an average 0.82. CCCs in frequency domain spectrums are between 0.86 and 0.94. The results reveal that it is well feasible to employ the variations of cutting forces to derive the variations of surface profile. As experimental results are close to the theoretical deductions, it also verifies the suitability of the deducted theory.
URI: http://hdl.handle.net/11455/1517
其他識別: U0005-0602200715020900
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.