Please use this identifier to cite or link to this item:
標題: 旋轉微流道閥門可視化及雷射偵測
Visualization Experiments of Microfluidics Valve and Diode Laser Detection
作者: 黃柏鈞
Huang, Po-Chun
關鍵字: Centrifugal;離心力;Capillary valve;Diode laser;毛細閥;二極體雷射
出版社: 機械工程學系所
引用: [1] Thorsen, G., Ekstrand, G., Selditz, U., Wallenborg, R. S., and Andersson, P., “Integated Microfluidics for Parallel Processing of Proteins in a CD Microlaboratory,” Proceedings of 7th International Conference on Miniaturized Chemical and Biochemlcal Analysis Systems, Squaw Valley, California, USA, October 5-9, 2003. [2] Gustafsson, M., Hirschberg D., Palmberg, C., Jornvall, H., and Bergman, T., “Integrated Sample Preparation and MALDI Mass Spectrometry on a Microfluidic Compact Disk,” Analytical Chemistry, Vol. 76, NO.2, 2004, pp. 345-350. [3] Hirschberg, D., Jagerbrink, T., Samskog, J., Gustafsson, M., Stahlberg, M., Alvelius, G., Husman, B., Carlquist, M., Jornvall, H., and Bergman, T., “Detection of Phosphorylated Peptides in Proteomic Analyses Using Microfluidic Compact Disk Technology,” Analytical Chemistry, Vol. 76, 2004, pp. 5864-3871. [4] Kim, J., Jang S. H., Jia, G., Zoval, J. V., Silva N. A. D., and Madou M. J., “Cell Lysis on a Microfluidic CD (compact disc),” Journal of Royal Society of Chanical , Vol. Lab Chip, 2004, pp. 516-522. [5] Johnson, R. D., Badr, I. H. A., Barrett, G., Lai, S., Lu Y., Madou, M. J., and Bachas L. G., “Development of a Fully Integrated Analysis Sysytem for Ions Based on Ion-Selective Optoded and Centrifugal Microfluidics,” Analytical Chemistry, Vol. 73, 2001, pp. 3940-3946. [6] Haeberle, S., Zengerle, R., and Duree, J., “Online Process Control for Centrifugal Micromixing,” Proceedings of International Conference on Solid-State Sensor, Actuators and Microsystem, June 5-9, 2005. [7] Atemcia, J., and Beebe, D. J., “An Oscillating Ferromagnetic Micropump Utlizing Centrifugal Force,” Proceedings of 7th International Conference on Miniaturized Chemical and Biochemlcal Analysis Systems, Squaw Valley, California, USA, October 5-9, 2003. [8] Pollack M. G., Fair, R. B., and Shenderov A. D., “Electrowetting-based Actuation of Liquid Droplets for Microfluidic Applications,” Applied physics, Vol. 77, No.11, September 2000, pp. 1725-1726. [9] Hsieh, J., Mach, P., Cattaneo, F., Yang, S., Krupenkine, T., Baldwin, K., and Rogers, J. A., “Tunable Microfluidic Optical-Fiber Devices Based on Electrowetting Pumps and Plastic Microchannels,” Proceedings of the IEEE Photonics Technology Letters, Vol. 15, No. 1, January 2003. [10] Chiou, P. Y., Wu, M. C., Moon H., Kim, C. J., and Toshiyoshi, H., “Optical Actuation of Microfluidics Base on Opto-Electroweeting,” Proceedings of International Conference on Solid-State Sensor, Actuators and Microsystem, June 2-6, 2002. [11] Ducree, J., Schlosser H. P., Haeberle, S., Glatzel, T., Brenner, T., and Zengerle, R., “Centrifugal Platform for High-Throughout Reactive Micromixing,” Proceedings of 8th International Conference on Miniaturized System for Chemical and Life Sciences Systems, September, 26-30, 2004, Malmo, Sweden. [12] Yang, L. J., Yao, T. J., and Tai, Y. C., “The Marching Velocity of the Capillary Meniscus in a Microchannel,” Joural of Micromechanics and Microengineering, Vol. 14, 2004, pp. 220-225. [13] Ducree, J., Brenner, T., Glatzel, T., and Zengerle, R., “A Coriolis-Based Split-and-Recombine Laminator for Ultrafast Mixing on Rotating Disks,” Proceedings of 7th International Conference on Miniaturized Chemical and Biochemlcal Analysis Systems, Squaw Valley, California, USA, October 5-9, 2003. [14] Roulet, J. C., Volkel, R., Herzig, H. P., Verpoorts, E., Derooij, N. F., and Dandiker R., “Performance of an Integrated Microoptical System for Fluorescence Detection in Microfluidic System,” Analytical Chemistry, Vol. 74, No.14, July 15, 2002, pp. 3400-3407. [15] Puckett, L. G., Dikici, E., Lai, S., Madou J. C., Bachas, L. G., and Daunert, S., “Investigation into the Applicability of the Centrifugal Microfluidics Platform for the Development of Protein-Ligand Binding Assays Incorporating Enhanced Green Fluorescent Protein as a Fluorescent Reporter,” Analytical Chemistry, Vol. 76, No.24, December 15, 2004, pp. 7263-7268. [16] Badr, I. H. A., Johnson, R. D., Madou, M. J., and Bachas, L. G., “Fluorescent Ion-Selective Optode Membranes Incorporated onto a Centrifugal Microfluidics Platform,” Analytical Chemistry, Vol. 74, No.21, November 1, 2002, pp. 5569-5575. [17] Hamamatsu;, June 2006. [18] Varma, M. M., Nolte, D. D., Inerowicz, H. D., and Regnier, F. E., “Spinning-Disk Self-Referencing Interferometry of Antigen-Antibody Recognition,” Optical Society, Vol. 29, No. 9 , May 1, 2004. [19] Varma, M. M., Inerowicz, H. D., Regnier, F. E., and Nolte, D. D., “High-Speed Lable-Free Detection by Spinning-Disk Micro-Interferometry,” Biosensor and Bioelectronics, 2004, pp. 1371-1376. [20] Zeng, J., Deshpande M., Greiner, K. B., and Gilbert J. R., “Fluidic Capacitance Model of Capillary-Driven Stop Valves,” ASME international mechanical engineering congress and exposition, 2000 [21] Grumann, M., Brenner, T., Beer C., Zengerle, R., and Ducree, J., “Visualization of Flow Patterning in High-Speed Centrifugal Microfluidics,” Rev Sci Instru 76(2):025101s, 2005. [22] Duffy, D. C., Gills, H. L., Lin, J., Sheppard, N. F., and Kellogg, G. J., “Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays,” Analytical Chemistry, Vol. 71, No. 20, 1999, pp. 4669–4678. [23] Man, P. F., Mastrangelo, C. H., Burns, M. A., and Burke, D. T., “Microfabricated Capillary-Driven Stop Valve and Sample Injector,” Proceedings of 11th Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, Germany, Jan. 25-29, 1998, pp. 45-50. [24] 林茂吉, 光碟式旋轉微流體混合之可視化實驗, 中興大學機械工程研究所碩士論文, 中華民國九十四年八月十八日。 [25] Lambert, P., Letier, P., and Delchambre, A., “Capillary and Surface Tension Force in the Manipulation of Small Parts,” Proceedings of the 5th IEEE Internation Symposium on Assembly and Task Planning, pp. 54-59 July 10-11, 2003. [26] Hecht, E., Optics, 4th edition, Addison Wesley, San Francisco, 2002, chapter 3 and 4. [27] 匯展電子;, June 2006. [28] Zeng, J., Banerjee, D., Deshpande, M., Gilbert, J. R., Duffy, D. C., and Kellogg, G. J., “Design Analyses of Capillary Burst Valves in Centrifugal Microfluidics,” Technical Proceedings of Micro Total Analysis Systems, MicroTAS 2000, Enschede, The Netherlands, pp. 493–496.

This study uses the flow visualization method to observe capillary stop valves of red ink in the microchannel fabricated on a rotating compact disk (CD). The capillary valves presented here were designed according the 3D theory that takes account of the aspect ratio effect. It is found that the 3D analysis agrees well with the present experiments of the burst frequency while the 1D theory suffers a large deviation from the measurements for the case that the capillary channel has a low depth-to-width ratio.

The visualization mechanisms are composed of the image acquisition system, a step motor with function generator, and the in-house synchronizer for capturing the synchronizing images with the rotation motion. The passive valves for restraining the capillary force could be realized by designing a channel width of 300μm and 400μm together with a wedge angle ranging from 50° to 100°. The experimental results on the capillary-burst valves are consistent with the 3D theory.

Furthermore, the fluid existence in microchannel can be precisely detected by diode laser. The laser immediately evokes a response to the disturbing of the fluid, thus this result indicates the practicability of applying laser on flow switch detected regardless of the fluid color.
其他識別: U0005-0707200611094400
Appears in Collections:機械工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.