Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15329
標題: 受軸向力複雜鋼索之理論分析
Rational Analysis of Axially Loaded Complex Wire Rope
作者: 陳君璽
Chen, Chun-Hsi
關鍵字: wire rope;鋼索;higher order helix;pure twisting effect;高階螺旋線;純扭轉效應
出版社: 土木工程學系所
引用: 1. 何昆龍(2002),多層鋼索中高階螺旋鋼線曲率及曲率變量之解析解,國立中興大學土木工程學系碩士論文。 2. 林慶昌、黃伯爵(1995),鋼索構件承載行為與損壞探討,結構工程,10(4),pp.111-119。 3. 范斯豪(2006),複雜鋼索中高階螺旋線之幾何線型研究,國立中興大學土木工程學系碩士論文。 4. 黃伯爵(1995),鋼索構件之彈塑性分析及損壞探討,逢甲大學土木及水利工程研究所碩士論文。 5. 閻嘉義、陳君璽、何昆龍(2003),多層鋼索中高階螺旋鋼線曲率與曲率變量之解析解,第六屆結構工程研討會。 6. 閻嘉義、陳君璽、何昆龍(2004),以質點運動類比法求高階螺旋線鋼索之曲率解析解,中國土木水利工程學刊,16(1),pp.167 173。 7. 曾祥傑(2004),拉力作用下鋼索受衝擊力的反應,國立中興大學土木工程學系碩士論文。 8. 錢偉長(1987),彈性力學,亞東書局。 9. 蕭映如(2001),單層多股絞線在受拉力下之行為,國立中興大學土木工程學系碩士論文。 10. 鐘瑟欽(2006),鋼索受軸向衝擊力之反應,國立中興大學土木工程學系碩士論文。 11. 鋼索,九春工業有限公司技術資料(日本東京製鋼提供)。 12. Blanco, J. A., and Costello, G. A. (1974), "Cylinderical constraint of helical springs." Journal of Applied Mechanics, ASME, 1138-1140. 13. Blouin, F., and Cardou, A. (1989), "A study of helically reinforced cylinders under axially symmetric loads and application to strand mathematical modeling." Int. J. Solids Structures, 25(2), 189-200. 14. Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M. (1993), Advanced Mechanics of Materials, 5th Ed., John Wiley and Sons, Inc., New York, N. Y. 15. Cardou, A., and Jolicoeur, C. (1997), "Mechanical models of helical strands." Applied Mechanics Review, ASME, 50(1), 1-14. 16. Casey, N. F., and Lee, W. K. (1989), "The fatigue failure of large diameter six strand wire rope." Int. J. Fatigue, 11(2), 78-84. 17. Chien, C. H., and Costello, G. A. (1985), "Effective length of a fractured wire in wire rope." Journal of Engineering Mechanics Division, ASCE, 111(7), 952-961. 18. Chien, C. H., LeClair, A., and Costello, G. A. (1988), "Strength and fatigue life of wire rope." Mech. Struct. & Mach., 16(2), 213-223. 19. Conway, T. A. (1998), "Coupled response of an axially loaded strand." Proceedings of the Fifth International Conference on Composites Engineering, ICCE/5, 255-256. 20. Conway, T. A., and Costello, G. A. (1990), "Bird-caging in wire rope." Journal of Engineering Mechanics Division, ASCE, 116(4), 822-831. 21. Costello, G. A. (1977), "Large deflections of helical spring due to bending." Journal of Engineering Mechanics Division, ASCE, 103(EM3), 481-487. 22. Costello, G. A. (1978), "Analytical investigation of wire rope." Applied Mechanics Review, 31(7), 897-900. 23. Costello, G. A. (1983), "Stresses in multilayered cables." Journal of Energy Resources Technology, 105, 337-340. 24. Costello, G. A. (1990), Theory of Wire Rope, Springer-Verlag, New York Berlin Heidelberg. 25. Costello, G. A., and Butson, G. J. (1982), "Simplified bending theory for wire rope." Journal of Engineering Mechanics Division, ASCE, 108(EM2), 219-227. 26. Costello, G. A., and Miller, R. E. (1979), "Lay effect of wire rope." Journal of Engineering Mechanics Division, ASCE, 105(EM4), 597-608. 27. Costello, G. A., and Miller, R. E. (1980), "Static response of reduced rotation rope." Journal of Engineering Mechanics Division, ASCE, 106, 623-631. 28. Costello, G. A., and Phillips, J. W. (1973), "Contact stresses in thin twisted rods." Journal of Applied Mechanics, ASME, 629-639. 29. Costello, G. A., and Phillips, J. W. (1974), "A more exact theory for twisted wire cables." Journal of Engineering Mechanics Division, ASCE, 100(EM5), 1096-1099. 30. Costello, G. A., and Phillips, J. W. (1976), "Effective modulus of twisted wire cables." Journal of Engineering Mechanics Division, ASCE, 102(EM1), 171-181. 31. Costello, G. A., and Sinha, S. K. (1977), "Torsional stiffness of twisted wire cables." Journal of Engineering Mechanics Division, ASCE, 103(EM4), 766-770. 32. Drucker, D. C., and Tachau, H. (1945), "A new design criteria for wire rope." Journal of Applied Mechanics, A33-A38. 33. Durelli, A. J., and Machida, S. (1973), "Response of epoxy oversized models of strands to axial and torsional loads." Experimental Mechanics, 13, 313-321. 34. Elata, D., Eshkenazy, R., and Weiss, M. P. (2004), "The mechanical behavior of a wire rope with an independent wire rope core." International Journal of Solids and Structures, 41, 1157-1172. 35. Giglio, M., and Manes, A. (2005), "Life prediction of a wire rope subjected to axial and bending loads." Engineering Failure Analysis, 12, 549-568. 36. Gladwell, G. M. L. (1980), Contact problems in the classical theory of elasticity, Sijthoff & Noordhoff. 37. Goudreau, S., and Cardou, A. (1993), "Flexural testing of an epoxy oversized strand model under traction." Experimental Mechanics, 300-307. 38. Green, A. E., and Laws, N. (1966), "A general theory of rods." Proc. R. Soc., A283, 145-155. 39. Hall, H. M. (1951), "Stresses in small wire ropes." Wire and Wire Products, 26(3), 228, 257-259. 40. Hamilton, G. M. (1963), "Yielding in contact stress problems." A. E. I. Research Laboratory: Aldermaston Court, Berks, England. Technical Report: A. 1374. 41. Hearmon, R. F. S. (1961), Applied anisotropic elasticity, Oxford University Press. 42. Hertz, H. (1896), "Miscellaneous Papers." New York: Macmillan. 43. Hobbs, R. E., and Nabijou, S. (1995), "Changes in wire curvature as a wire rope is bent over a sheave." Journal of Strain Analysis, 30(4), 271-281. 44. Hobbs, R. E., and Raoof, M. (1982), "Interwire slippage and fatigue prediction in stranded cables for TLP tethers." Behavior of offshore structures, 2, 77-99. 45. Hobbs, R. E., and Raoof, M. (1996), "Behaviour of cables under dynamic or repeated loading." J. Construct. Steel Res., 39(1), 31-50. 46. Hruska, F. H. (1951), "Calculation of stresses in wire ropes." Wire and Wire Products, 26(9), 766-767, 799-801. 47. Hruska, F. H. (1952), "Radial forces in wire ropes." Wire and Wire Products, 27(5), 459-463. 48. Hruska, F. H. (1953), "Tangential forces in wire ropes." Wire and Wire Products, 28(5), 455-460. 49. Huang, N. C. (1975), "On the extension of elastic two-ply filament yarns." Journal of Applied Mechanics, ASME, 821-824. 50. Huang, N. C. (1978), "Finite extension of an elastic strand with a central core." Journal of Applied Mechanics, ASME, 852-858. 51. Jayakumar, C. V., Sathikh, S., and Jebaraj, C. (1999), "Comparative study of two semicontinuous models for wire strand analysis." Journal of Engineering Mechanics, ASCE, 125(3), Discussion, 369-370. 52. Jiang, W (1995), "General formulation of the theories of wire ropes." Journal of Applied Mechanics, 62, 747-755. 53. Jiang, W. G., and Jones, W. K. (1991), "Forced vibration of coupled extensional-torsional systems." Journal of Engineering Mechanics, ASCE, 117(5), 1171-1190. 54. Jiang, W. G., Henshall, J. L., and Walton, J. M. (2000), "A concise finite element model for three-layered straight wire rope strand." International Journal of Mechanical Sciences, 42, 63-86. 55. Jiang, W. G., Yao, M. S., and Walton, J. M. (1999), "A concise finite element model for simple straight wire rope strand." International Journal of Mechanical Sciences, 41, 143-161. 56. Jolicoeur, C. (1996), "Discussion of: A general formulation of the theroies of wire rope." Journal of Applied Mechanics, 63, 1053. 57. Jolicoeur, C. (1997), "Comparative study of two semicontinuous models for wire strand analysis." Journal of Engineering Mechanics, ASCE, 123(8), 792-799. 58. Jolicoeur, C., and Cardou, C. (1991), "A numerical comparison of current mathematical models of twisted wire cables under axisymmetric loads." Journal of Energy Resources Technology, 113(4), 241-249. 59. Jolicoeur, C., and Cardou, C. (1994), "Analytical solution for bending of coaxial orthotropic cylinders." Journal of Engineering Mechanics, ASCE, 120(12), 2556-2574. 60. Jolicoeur, C., and Cardou, C. (1996), "Semicontinuous mathematical model for bending of multilayered wire strands." Journal of Engineering Mechanics, ASCE, 122(7), 643-650. 61. Knapp, R. H. (1979), "Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion." International Journal for Numerical Methods in Engineering, 14, 515-529. 62. Kumar, K. and Cochran, J. E. (1987), "Closed-form analysis of elastic deformations of multilayered strands." Journal of Applied Mechanics, 54, 898-903. 63. Kunoh, T., and Leech, C. M. (1985), "Curvature effects on contact position of wire strands." International Journal of Mechanical Sciences, 27(7/8), 465-470. 64. Labrosse, M., Nawrocki, A., and Conway, T. (2000), "Frictional dissipation in axially loaded simple straight strands." Journal of Engineering Mechanics, ASCE, 126(6), 641-646. 65. Lanteigne, J. (1985), "Theoretical estimation of the response of helically armored cables to tension, torsion, and bending." Journal of Applied Mechanics, ASME, 52, 423-432. 66. LeClair, R. A. (1991), "Axial response of multilayered strands with compliant layers." Journal of Engineering Mechanics Division, ASCE, 117(12), 2884-2903. 67. Lee, W. K. (1989), The mechanics and mathematical modeling of wire rope. PhD dissertation, Strathclyde Univ., U.K. 68. Lee, W. K. (1991), "An insight into wire rope geometry." International Journal of Solids and Structures, 28, 471-490. 69. Lee, W. K., Casey, N. F., and Grey, T. G. F. (1987), "Helix geometry in wire rope." Wire Industry, 461-468. 70. Leissa, A. W. (1959), "Contact stresses in wire ropes." Wire and Wire Products, 34, 307-314. 71. Lekhnitskii, S. G., Tsai, S. W., and Cheron, T. (1968), Anisotropic Plates, Gordon and Breach, Science Publishers. 72. Love, A. E. H. (1944), A treatise on the mathematical theory of elasticity, Ch.18 and Ch. 19, Dover Publications Inc., New York. 73. Machida, S. and Durelli, A. J. (1973), "Response of a strand to axial and torsional displacements." J. Mech. Eng. Sci., 15(4), 241-251. 74. Mindlin, R. D. (1949), "Compliance of elastic bodies in contact." Journal of Applied Mechanics, Transactions of the ASME, 26, 259-268. 75. McConnell, K. G., and Zemke, W. P. (1982), "A model to predict the coupled axial torsion properties of acsr electrical conductors." Experimental Mechanics, 22(7), 237-244. 76. Nabijou, S., and Hobbs, R. E. (1995), "Relative movements within wire ropes bent over sheaves." Journal of Strain Analysis, 30(2), 155-165. 77. Nawrocki, A., and Labrosse, M. (1997), "A finite element model for strand cables." Innovation in computer methods for civil and structural engineering, Civil-Comp Press, 1-11. 78. Nawrocki, A., and Labrosse, M. (2000), "A finite element model for simple straight wire rope strands." Computers & Structures, 77, 345-359. 79. Nawrocki, A., Labrosse, M., and Dubigeon, S. (1996), "Finite element modeling of the static behaviour of single strand cables." Proceedings of 1996 Engineering Design and Analysis Conference, ASME, Montpelier, France, VI, 13-19. 80. Nowak, G. (1974), "Computer design of electromechanical cables for ocean applications." Proc. 10th Marine Tech. Soc. Conf., Washington DC, 293-305. 81. Paris, A. J., Lin, C. C., and Costello, G. A. (1992, Sep.), "Simple cord composites." Journal of Engineering Mechanics Division, ASCE, 118(9), 1939-1948. 82. Phillips, J. W., and Costello, G. A. (1972), "Large deflections of impacted helical springs." Journal of the Acoustical Society of America, 51(3), 967-973. 83. Phillips, J. W., and Costello, G. A. (1973), "Contact stresses in twisted wire cables." Journal of the Engineering Mechanics Division, ASCE, 99, 331-341. 84. Phillips, J. W., and Costello, G. A. (1977), "Axial impact of twisted wire cables." Journal of Applied Mechanics, ASME, 127-131. 85. Phillips, J. W., and Costello, G. A. (1985), "Analysis of wire ropes with internal-wire-rope cores." Journal of Applied Mechanics, ASME, 52, 510-516. 86. Phillips, J. W., Miller, R. E., and Costello, G. A. (1980), "Contact stresses in a straight cross-lay wire rope." Proc. 1st Annual Wire Rope Conf., Denver CO, 177-199. 87. Prakash, A., Conway, T. A., and Costello, G. A. (1992), "Compression of a cord." Journal of Applied Mechanics, ASME, 59, S213-S216. 88. Ramsey, H. (1988), "A theory of thin rods with application to helical constituent wires in cables." International Journal of Mechanical Sciences, 30(8), 559-570. 89. Ramsey, H. (1990), "Analysis of interwire friction in multilayered cables under uniform extension and testing." International Journal of Mechanical Sciences, 32(8), 709-716. 90. Ramsey, H. (1991), "Localized effect of clamp or socket end connections on helical wires in multilayered cables." International Journal of Solids and Structures, 28(6), 779-790. 91. Raoof, M. (1983), Interwire contact forces and the static, hysteretic and fatigue properties of multi-layer structural strands, PhD Thesis, Imperial Col. of Sci. and Tech., London. 92. Raoof, M. (1989a), "Theoretical effect of external pressure on spiral strand." Proc. Instn Civ. Engrs, Part 2, 87, 113-118. 93. Raoof, M. (1989b), "Freebending tests on large spiral strands." Proc. Instn Civ. Engrs, Part 2, 87, 605-626. 94. Raoof, M. (1990a), "Free bending of spiral strands." Journal of Engineering Mechanics, ASCE, 116(3), 512-530. 95. Raoof, M. (1990b), "Axial fatigue of multilayered strands." Journal of Engineering Mechanics Division, ASCE, 116(10), 2083-2089. 96. Raoof, M. (1991a), "Methods for analysing large spiral strands." J. Strain Anal. Eng. Des., 26(3), 165-174. 97. Raoof, M. (1991b), "Prediction of axial damping in spiral strands." J. Strain Anal. Eng. Des., 26(4), 221-230. 98. Raoof, M., and Hobbs, R. E. (1984), "The bending of spiral strand and armored cables close to terminations." Journal of Energy Resources Technology, 106, 349-355. 99. Raoof, M., and Hobbs, R. E. (1988a), "Analysis of multilayered structural strands." Journal of Engineering Mechanics, ASCE, 114(7), 1166-1182. 100. Raoof, M., and Hobbs, R. E. (1988b), "Torsion tests on large spiral strands." J. Strain Anal. Eng. Des., 23(2), 97-104. 101. Raoof, M., and Hobbs, R. E. (1989), "Torsional stiffness and hysteresis in spiral strands." Proc. Instn Civ. Engrs, Part 2, 87, 501-515. 102. Raoof, M., and Huang, Y. P. (1991), "Upper-bound prediction of cable damping under cyclic bending." Journal of the Engineering Mechanics Division, ASCE, 117(12), 2729-2747. 103. Raoof, M., and Huang, Y. P. (1992), "Axial and free-bending analysis of spiral strands made simple." Journal of Engineering Mechanics, ASCE, 118(12), 2335-2351. 104. Raoof, M., and Kraincanic, I. (1994), "Critical examination of various approaches used for analyzing helical cables." Journal of Strain Analysis, 29(1), 43-55. 105. Raoof, M., and Kraincanic, I. (1995a), "Simple derivation of the stiffness matrix for axial/torsional coupling of spiral strands." Computers & Structures, 55(4), 589-600. 106. Raoof, M., and Kraincanic, I. (1995b), "Analysis of large diameter steel ropes." Journal of Engineering Mechanics, ASCE, 121(6), 667-675. 107. Raoof, M., and Kraincanic, I. (1995c), "Recovery length in multilayered spiral strands." Journal of the Engineering Mechanics Division, ASCE, 121(7), 795-800. 108. Raoof, M., and Kraincanic, I. (1998a), "Determination of wire recovery length in steel cables and its practical applications." Computers & Structures, 68, 445-459. 109. Raoof, M., and Kraincanic, I. (1998b), "Prediction of coupled axial/torsional stiffness coefficients of locked-coil ropes." Computers & Structures, 69, 305-319. 110. Raoof, M., Huang, Y. P., and Pithia, K. D. (1994), "Response of axially preloaded spiral strands to impact loading." Computers & Structures, 51(2), 125-135. 111. Roark, R. J., and Young, W. C. (1975), Formulas for stress and strain., 5th Ed., McGraw-Hill Book Co., Inc., New York, N. Y. 112. Samras, R. K., Skop, R. A., and Milburn, D. A. (1974), "Analysis of coupled extensional-torsional oscillations in wire rope." J. Eng. Ind., 96, 1130-1135. 113. Sathikh, S., Jayakumar, and Jebaraj, C. (1996), "Discussion of: A general formulation of the theroies of wire rope." J. App. Mech., 63, 1053-1054. 114. Sathikh, S., Moorthy, M. B. K., and Krishnan, M. (1996), "A symmetric linear elastic model for helical wire strands under axisymmetric loads." Journal of Strain Analysis, 31(5), 389-399. 115. Sathikh, S., Rajasekaran, S., Jayakumar, and Jebaraj, C. (2000), "General thin rod model for preslip bending response of strand." Journal of Engineering Mechanics, ASCE, 126(2), 132-139. 116. Shahsavari, H., and Ostoja-Starzewski, M. (2005), "Spectral finite element of a helix." Mechanics Research Communications, 32, 147-152. 117. Sokolnikoff, L. S. (1956), Mathematical Theory of Elasticity, 2nd Ed., McGraw-Hill Book Company, New York, Toronto, London. 118. Suslov, B. M. (1936), "On the modulus of elasticity of wire ropes." Wire and Wire Products, 11, 176-182. 119. Thomas, H. R. and Hoersch, V. A. (1930), Stresses due to the pressure of one elastic solid upon another. Engineering Experiment Station, University of Illinois, Urbana, Illinois. 120. Timoshenko, S., and Goodier, J. N. (1951), Theory of Elasticity, McGraw-Hill, 372-382. 121. Utting, W. S. (1994), "Survey of the literatures on the behaviour of steel wire ropes-Part I." Wire Industry, 633-635. 122. Utting, W. S. (1994), "Survey of the literatures on the behaviour of steel wire ropes-Part II." Wire Industry, 746-748. 123. Utting, W. S. (1995), "Survey of the literatures on the behaviour of steel wire ropes-Part III." Wire Industry, 269-270. 124. Utting, W. S., and Jones, N. (1984), "Survey of literature on the behaviour of wire ropes." Wire Industry, 623-629. 125. Utting, W. S., and Jones, N. (1985), "Tensile testing of a wire rope strand." J. Strain Anal. Eng. Des., 20, 151-164. 126. Utting, W. S., and Jones, N. (1987), "The response of wire rope strands to axial tensile loads—part I. experimental results and theoretical predictions." International Journal of Mechanical Sciences, 29(9), 605-619. 127. Utting, W. S., and Jones, N. (1987), "The response of wire rope strands to axial tensile loads—part II. comparison of experimental results and theoretical predictions." International Journal of Mechanical Sciences, 29(9), 621-636. 128. Velinsky, S. A. (1985), "General nonlinear theory for complex wire rope." International Journal of Mechanical Sciences, 27(7/8), 497-507. 129. Velinsky, S. A. (1985), "Analysis of fibre-core wire rope." Journal of Energy Resources Technology, 107, 388-393. 130. Velinsky, S. A. (2004), "Compressive Loading of Stiffened, Wire-Strand Based Structures." Mechanics Based Design of Structures and Machines , 32(1), 101 - 113 . 131. Velinsky, S. A., Anderson, G. L., and Costello, G. A. (1984, Mar.), "Wire rope with complex cross sections." Journal of the Engineering Mechanics Division, ASCE, 110(3), 380-391. 132. Wempner, G. (1981), Mechanics of solids with applications to thin bodies, Ch.8, Sijthoff & Noordhoff. 133. Yen J Y and Chen C H (2006), "Theoretical approach to the solutions of axially loaded complex ropes", Journal of the Chinese Institute of Engineers, 29(4), 695-701. 134. Zhong, Z. H. (1993), Finite element procedures for contact-impact problems, Oxford University Press.
摘要: 
複雜鋼索為多層鋼絞線交互纏繞而成之結構元件,過去鋼索力學之發展幾乎止於鋼絞線之研究,鮮少論及複雜鋼索,故本研究以絞線之曲桿理論為出發點,將單股鋼線視為基本單元,利用細長桿理論描述其力平衡,並考慮鋼線可能之運動與接觸型式,建立複雜鋼索之整體力與變形關係、分析鋼線受力分佈,以及探討鋼線局部純扭轉、摩擦與接觸效應對鋼索整體行為之影響。

研究過程中,首先整理絞線理論,鋼線之力平衡以Love方程式描述,其中,特別針對三維曲桿「純扭轉效應」,推導合理之修正模式;考慮鋼線間可能之接觸型式,簡明地建立鋼線層與層之間接觸力與摩擦力的傳遞方式;對於複雜鋼索中高階螺旋線,則以一剛桿相對運動模型之軌跡與角速度,分別類比為線型函數與曲率分量;最後整合絞線理論與前述各項修正方法或特殊數學模式,而得複雜鋼索理論。

分析時,首先探討單層與多層絞線,利用本論文中之修正絞線理論,計算整體之力-變形或應變關係,與鋼線之受力分佈,同時分別與Costello曲桿模型及Raoof-Hobbs半連續模型作相互之比較與驗證。結果顯示,對於單層絞線而言,三組模型之分析結果幾乎相同,然而對於多層絞線而言,Costello模型將略高估整體等效勁度,修正模型之結果將介於Raoof-Hobbs模型中「無滑移(No slip)」與「完全滑移(Full slip)」之上下限之間,由可推知摩擦力、接觸力之傳遞對多層絞線受力後之行為有明顯之影響。

對於複雜鋼索之分析,將分別與Velinsky-Costello模型(VC model)及Raoof-Kranicanic模型(RK model)交互比較。首先,本論文中複雜鋼索理論(以下稱修正模式)之分析結果顯示,二階螺旋線存在純扭轉效應,且隨鋼索整體受力而增加,過去之曲桿模型(如VC model)未加考慮,顯然將高估鋼索等效勁度;與VC及RK模型相互比較發現,修正模式之結果趨於保守,深究並比較前述二典型分析理論可發現,二者均低估鋼線線型高階化後,其受力之不對稱性。此外,VC模型忽略接觸、摩擦效應,用以處理鋼線數量繁多之複雜鋼索,其結果之誤差應更高;RK模型中假設同層鋼線彼此接觸,然而一般具有核心鋼線之絞線,其外層鋼線之間大多彼此分離,故RK模型並不適用於具核心複雜鋼索。

本論文以精確描述鋼線之線型為出發點,根據鋼線彼此可能之接觸型態,建立接觸力與摩擦力之傳遞模式,同時針對高階螺旋線可能之純扭轉效應,發展出合理之修正方法。在盡可能減少多餘之假設下,本論文所提出之複雜鋼索理論應為合理且可行之分析模型。

A complex wire rope is consisted of several helical strands. Each strand may be composed of several wires or several strands. Most previous researches centered on mechanics of strand compared with little studies on wire rope. Theory of strand was extended to analyze axially loaded complex wire ropes in this paper, individual wire was considered as a slender rod. Loads acted on each wire included contact forces and frictions were determined based on various contact patterns among wires.

First, literatures for theory of strand were studied. Equilibrium for wires were described by the Love''s equations, where "pure twisting effect" in a curved rod were defined and considered to modify the Love''s equations. Contact patterns among wires were concisely classified to determine loads acted on individual wire. Higher order helices were defined by a rigid body motion model, where the traces and angular velocities were analogized as the curves and curvature components (including the curvature and torsion) for wires, respectively.

Behaviors of axially loaded single and multi-layered strands were discussed first in this paper. They were compared with Costello model and Raoff-Hobbs model. Results show that good agreement among all models for analyzing single-layered strands, but for the problems of multi-layered strand, Costello model will slightly over-evaluate the effective stiffness of the strand, results analyzed by the method established in this paper (Yen-Chen model) lies in between no-slip and full-slip forms of Raoof-Hobbs model. Analysis of complex wire ropes was compared with Velinsky-Costello model and Raoof-Kraincanic model. This paper demonstrate that the pure twisting effects exist on 2nd-order helices. Results show that stiffness calculated by Yen-Chen model was slightly lower then the other two.
URI: http://hdl.handle.net/11455/15329
其他識別: U0005-2008200622311900
Appears in Collections:土木工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.