Please use this identifier to cite or link to this item:
標題: 豬瘟E2重組次單位蛋白與假性狂犬病gE缺損不活化雙價疫苗安全性與保護效力之評估
Evaluation of the Safety and Protective Efficacy of a Classical Swine Fever Recombinant E2 Subunit and Pseudorabies gE-deleted Inactivated Bivalent Vaccine
作者: 吳柏穎
Wu, Po-Ying
關鍵字: 豬瘟;CSFV;假性狂犬病;PRV
出版社: 獸醫病理生物學研究所
引用: 參考文獻 行政院農業委員會動植物防疫檢疫局。動物用藥品檢驗標準。第七十一節:假性狂犬病活毒疫苗檢驗標準。1975。 朱純燕、陳貞妗、陳銘政。水包油包水 (W/O/W) 油質佐劑對牛流行熱疫苗抗體消長之影響。台灣獸醫誌。33: 211-216。2007。 李淑慧、鐘明華、林有良、丁履紉、陽喜金。豬實驗感染野外豬瘟病毒之組織病理變化。台灣省家畜衛生試驗所研究報告。33: 12-23。1997。 郭自晏。豬瘟病毒E2醣蛋白之選殖表現及其單株抗體之製備。碩士論文。中興大學。獸醫病理學研究所。台中。台灣。2003。 黃天祥、鐘明華、鄧明中、王 羣、林有良、陳靜美、黃金城。豬瘟免疫適期的探討。台灣省家畜衛生試驗所研究報告。38。2002。 張文傑。豬瘟重組E2次單位疫苗安全性與保護效力之評估。碩士論文。中興大學。獸醫病理學研究所。台中。台灣。2008。 張熙展。豬瘟病毒之E2重組次單位抗原劑量決定試驗及單株抗體之製備。碩士論文。中興大學。獸醫病理學研究所。台中。台灣。2008。 鐘明華、李淑慧、邱資峰、楊善金、詹益波。假性狂犬病不活化疫苗油質佐劑在家兔引起之免疫及組織病理反應。台灣省家畜衛生試驗所研究報告。30: 11-24。1994。 Andrew M., Morris K., Coupar B., Sproat K., Oke P., Bruce M., Broadway M., Morrissy C. and Strom D. Porcine interleukin-3 enhances DNA vaccination against classical swine fever. Vaccine 24: 3241-3247, 2006. Andrew M. E., Morrissy C. J., Lenghaus C., Oke P. G., Sproat K. W., Hodgson A. L., Johnson M. A. and Coupar B. E. Protection of pigs against classical swine fever with DNA-delivered gp55. Vaccine 18: 1932-1938, 2000. Andries K., Pensaert M. B. and Vandeputte J. Effect of experimental infection with pseudorabies (Aujeszky''s disease) virus on pigs with maternal immunity from vaccinated sows. Am J Vet Res 39: 1282-1285, 1978. Armengol E., Wiesmuller K. H., Wienhold D., Buttner M., Pfaff E., Jung G. and Saalmuller A. Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J Gen Virol 83: 551-560, 2002. Aujeszky A. Ueber eine neue Infektionskrankheit bei Haustieren, Zbl. Bakteriol. Infektionskrankh. Parasitenkde. 1. Abt. Orig. 32: 353-357, 1902. Barrera M., Sanchez O., Farnos O., Rodriguez M. P., Dominguez P., Tait H., Frias M., Avila M., Vega E. and Toledo J. R. Early onset and long lasting protection in pigs provided by a classical swine fever E2-vaccine candidate produced in the milk of goats. Vet Immunol Immunopathol 133: 25-32, 2010. Baskerville A. Aujeszky''s disease encephalitis in pigs produced by different modes of infection. Res Vet Sci 13: 394-395, 1972. Baskerville A. The histopathology of experimental pneumonia in pigs produced by Aujeszky''s disease virus. Res Vet Sci 14: 223-228, 1973. Bauhofer O., Summerfield A., Sakoda Y., Tratschin J. D., Hofmann M. A. and Ruggli N. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81: 3087-3096, 2007. Becker C. H. Zur Bedeutung der Lunge fur die Pathologische-anatomische Diagnose der Aujeszkyschen Krankheit des Schweines. Monatsh Veterinarmed 19: 5-11, 1964. Beer M., Reimann I., Hoffmann B. and Depner K. Novel marker vaccines against classical swine fever. Vaccine 25: 5665-5670, 2007. Ben-Porat T., DeMarchi J. M., Lomniczi B. and Kaplan A. S. Role of glycoproteins of pseudorabies virus in eliciting neutralizing antibodies. Virology 154: 325-334, 1986. Ben-Porat T. and Kaplan A. S. Molecular biology of pseudorabies virus. In: The herpesvirus. Edited by Roizman B. 3: 105-173, 1985. Bensaude E., Turner J. L., Wakeley P. R., Sweetman D. A., Pardieu C., Drew T. W., Wileman T. and Powell P. P. Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol 85: 1029-1037, 2004. Beran G. W. Transmission of Aujeszky''s disease virus. Proc 1st Int Symp on the Eradication of Pseudorabies (Aujeszky''s) Virus. p: 93-111, 1991. Beran G. W., Davies E. B., Arambulo P. V., 3rd, Will L. A., Hill H. T. and Rock D. L. Persistence of pseudorabies virus in infected swine. J Am Vet Med Assoc 176: 998-1000, 1980. Bianchi A. T., Moonen-Leusen H. W., van Milligen F. J., Savelkoul H. F., Zwart R. J. and Kimman T. G. A mouse model to study immunity against pseudorabies virus infection: significance of CD4+ and CD8+ cells in protective immunity. Vaccine 16: 1550-1558, 1998. Bouma A. Determination of the effectiveness of Pseudorabies marker vaccines in experiments and field trials. Biologicals 33: 241-245, 2005. Bouma A., De Jong M. C. and Kimman T. G. Comparison of two pseudorabies virus vaccines, that differ in capacity to reduce virus excretion after a challenge infection, in their capacity of reducing transmission of pseudorabies virus. Vet Microbiol 54: 113-122, 1997a. Bouma A., De Jong M. C. and Kimman T. G. The influence of maternal immunity on the transmission of pseudorabies virus and on the effectiveness of vaccination. Vaccine 15: 287-294, 1997b. Bouma A., Zwart R. J., De Bruin M. G., De Jong M. C., Kimman T. G. and Bianchi A. T. Immunohistological characterization of the local cellular response directed against pseudorabies virus in pigs. Vet Microbiol 58: 145-154, 1997c. Brittle E. E., Reynolds A. E. and Enquist L. W. Two modes of pseudorabies virus neuroinvasion and lethality in mice. J Virol 78: 12951-12963, 2004. Chang T. J., Huang T. S., Ho W. C. and Yang Y. H. A serological survey of Pseudorabies among finishing pigs in Taiwan from 1987 to 1999. J Chin Soc Vet Sci 19: 19-25, 1993. Cheung A. K. Cloning of the latency gene and the early protein 0 gene of pseudorabies virus. J Virol 65: 5260-5271, 1991. Cheung A. K. Detection of the large latency transcript of pseudorabies virus by RNA-PCR and its potential in diagnosis. J Vet Diagn Invest 6: 483-486, 1994. Coe N. E. and Mengeling W. L. Mapping and characterization of neutralizing epitopes of glycoproteins gIII and gp50 of the Indiana-Funkhauser strain of pseudorabies virus. Arch Virol 110: 137-142, 1990. Crump C. M., Bruun B., Bell S., Pomeranz L. E., Minson T. and Browne H. M. Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. J Gen Virol 85: 3517-3527, 2004. Davies E. B. and Beran G. W. Spontaneous shedding of pseudorabies virus from a clinically recovered postparturient sow. J Am Vet Med Assoc 176: 1345-1347, 1980. de Bruin M. G., van Rooij E. M., Voermans J. J., de Visser Y. E., Bianchi A. T. and Kimman T. G. Establishment and characterization of porcine cytolytic cell lines and clones. Vet Immunol Immunopathol 59: 337-347, 1997. de Bruin T. G., van Rooij E. M., de Visser Y. E., Voermans J. J., Samsom J. N., Kimman T. G. and Bianchi A. T. Discrimination of different subsets of cytolytic cells in pseudorabies virus-immune and naive pigs. J Gen Virol 81: 1529-1537, 2000. de las Mulas J. M., Ruiz-Villamor E., Donoso S., Quezada M., Lecocq C. and Sierra M. A. Immunohistochemical detection of hog cholera viral glycoprotein 55 in paraffin-embedded tissues. J Vet Diagn Invest 9: 10-16, 1997. de Leeuw P. W. and van Oirschot J. T. Vaccines against Aujeszky''s disease: evaluation of their efficacy under standardized laboratory conditions. Vet. Q. 7: 191-197, 1985. de Smit A. J., Bouma A., de Kluijver E. P., Terpstra C. and Moormann R. J. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination. Vet Microbiol 78: 307-317, 2001. de Smit A. J., Eble P. L., de Kluijver E. P., Bloemraad M. and Bouma A. Laboratory experience during the classical swine fever virus epizootic in the Netherlands in 1997-1998. Vet Microbiol 73: 197-208, 2000. Deng M. C., Huang C. C., Huang T. S., Chang C. Y., Lin Y. J., Chien M. S. and Jong M. H. Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet Microbiol 106: 187-193, 2005. Depner K. R., Hinrichs U., Bickhardt K., Greiser-Wilke I., Pohlenz J., Moennig V. and Liess B. Influence of breed-related factors on the course of classical swine fever virus infection. Vet Rec 140: 506-507, 1997. Derek T. O. H. and Rappuoli R. Novel Approaches to Vaccine Delivery. Pharmaceutical Research. 21: 1519-1530, 2004. Dewulf J., Koenen F., Mintiens K., Denis P., Ribbens S. and de Kruif A. Analytical performance of several classical swine fever laboratory diagnostic techniques on live animals for detection of infection. J Virol Methods 119: 137-143, 2004. Dong X. N., Chen Y., Wu Y. and Chen Y. H. Candidate multi-peptide-vaccine against classical swine fever virus induced potent immunity with serological marker. Vaccine 23: 3630-3633, 2005. Dong X. N. and Chen Y. H. Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2. Vaccine 24: 1906-1913, 2006a. Dong X. N. and Chen Y. H. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 25: 205-230, 2007. Dong X. N., Qi Y., Ying J., Chen X. and Chen Y. H. Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine 24: 426-434, 2006b. Duffy S. J., Morrison R. B. and Thawley D. G. Factors associated with spread of pseudorabies virus among breeding swine in quarantined herds. J Am Vet Med Assoc 199: 66-70, 1991. Edwards S., Fukusho A., Lefevre P. C., Lipowski A., Pejsak Z., Roehe P. and Westergaard J. Classical swine fever: the global situation. Vet Microbiol 73: 103-119, 2000. Elbers A. R., Bouma A. and Stegeman J. A. Quantitative assessment of clinical signs for the detection of classical swine fever outbreaks during an epidemic. Vet Microbiol 85: 323-332, 2002. Elbers A. R., Vos J. H., Bouma A., van Exsel A. C. and Stegeman A. Assessment of the use of gross lesions at post-mortem to detect outbreaks of classical swine fever. Vet Microbiol 96: 345-356, 2003. Ferrari M., Gualandi G. L., Corradi A., Monaci C., Romanelli M. G., Losio M. N., Cantoni A. M. and Pratelli A. The response of pigs inoculated with a thymidine kinase-negative (TK-) pseudorabies virus to challenge infection with virulent virus. Comp Immunol Microbiol Infect Dis 23: 15-26, 2000. Floegel-Niesmann G. Classical swine fever (CSF) marker vaccine. Trial III. Evaluation of discriminatory ELISAs. Vet Microbiol 83: 121-136, 2001. Floegel-Niesmann G., Bunzenthal C., Fischer S. and Moennig V. Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J Vet Med B Infect Dis Vet Public Health 50: 214-220, 2003. Frey C. F., Bauhofer O., Ruggli N., Summerfield A., Hofmann M. A. and Tratschin J. D. Classical swine fever virus replicon particles lacking the Erns gene: a potential marker vaccine for intradermal application. Vet Res 37: 655-670, 2006. Fuentes M. C. and Pijoan C. Pneumonia in pigs induced by intranasal challenge exposure with pseudorabies virus and Pasteurella multocida. Am J Vet Res 48: 1446-1448, 1987. Ganges L., Barrera M., Nunez J. I., Blanco I., Frias M. T., Rodriguez F. and Sobrino F. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine 23: 3741-3752, 2005. Gerdts V., Jons A., Makoschey B., Visser N. and Mettenleiter T. C. Protection of pigs against Aujeszky''s disease by DNA vaccination. J Gen Virol 78 ( Pt 9): 2139-2146, 1997. Gerdts V., Jons A. and Mettenleiter T. C. Potency of an experimental DNA vaccine against Aujeszky''s disease in pigs. Vet Microbiol 66: 1-13, 1999. Gillespie R. R., Hill M. A., Kanitz C. L., Knox K. E., Clark L. K. and Robinson J. P. Infection of pigs by Aujeszky''s disease virus via the breath of intranasally inoculated pigs. Res Vet Sci 68: 217-222, 2000. Grob P., Schijns V. E., van den Broek M. F., Cox S. P., Ackermann M. and Suter M. Role of the individual interferon systems and specific immunity in mice in controlling systemic dissemination of attenuated pseudorabies virus infection. J Virol 73: 4748-4754, 1999. Hahn J., Park S. H., Song J. Y., An S. H. and Ahn B. Y. Construction of recombinant swinepox viruses and expression of the classical swine fever virus E2 protein. J Virol Methods 93: 49-56, 2001. Hammond J. M., Jansen E. S., Morrissy C. J., Williamson M. M., Hodgson A. L. and Johnson M. A. Oral and sub-cutaneous vaccination of commercial pigs with a recombinant porcine adenovirus expressing the classical swine fever virus gp55 gene. Arch Virol 146: 1787-1793, 2001. Hammond J. M. and Johnson M. A. Porcine adenovirus as a delivery system for swine vaccines and immunotherapeutics. Vet J 169: 17-27, 2005. Hammond J. M., McCoy R. J., Jansen E. S., Morrissy C. J., Hodgson A. L. and Johnson M. A. Vaccination with a single dose of a recombinant porcine adenovirus expressing the classical swine fever virus gp55 (E2) gene protects pigs against classical swine fever. Vaccine 18: 1040-1050, 2000. Hanson R. P. The history of pseudorabies in the United States. J Am Vet Med Assoc 124: 259-261, 1954. Hoegen B., Saalmuller A., Rottgen M., Rziha H. J., Geldermann H., Reiner G., Pfaff E. and Buttner M. Interferon-gamma response of PBMC indicates productive pseudorabies virus (PRV) infection in swine. Vet Immunol Immunopathol 102: 389-397, 2004. Hong W., Xiao S., Zhou R., Fang L., He Q., Wu B., Zhou F. and Chen H. Protection induced by intramuscular immunization with DNA vaccines of pseudorabies in mice, rabbits and piglets. Vaccine 20: 1205-1214, 2002. Hooft van Iddekinge B. J., de Wind N., Wensvoort G., Kimman T. G., Gielkens A. L. and Moormann R. J. Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs; influence of different promoters on gene expression and on protection. Vaccine 14: 6-12, 1996. Hulst M. M. and Moormann R. J. Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors. J Gen Virol 78 ( Pt 11): 2779-2787, 1997. Iglesias G., Pijoan C. and Molitor T. Interactions of pseudorabies virus with swine alveolar macrophages: effects of virus infection on cell functions. J Leukoc Biol 45: 410-415, 1989. Johns H. L., Bensaude E., La Rocca S. A., Seago J., Charleston B., Steinbach F., Drew T. W., Crooke H. and Everett H. Classical swine fever virus infection protects aortic endothelial cells from pIpC-mediated apoptosis. J Gen Virol 91: 1038-1046, 2010. Kaden V., Heyne H., Kiupel H., Letz W., Kern B., Lemmer U., Gossger K., Rothe A., Bohme H. and Tyrpe P. Oral immunisation of wild boar against classical swine fever: concluding analysis of the recent field trials in Germany. Berl Munch Tierarztl Wochenschr 115: 179-185, 2002. Kaden V., Lange E., Riebe R. and Lange B. Classical swine fever virus Strain ''C''. How long is it detectable after oral vaccination? J Vet Med B Infect Dis Vet Public Health 51: 260-262, 2004. Karin M. and Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 3: 221-227, 2002. Kimman T. G. Comparative efficacy of three doses of the genetically engineered Aujeszky''s disease virus vaccine strain 783 in pigs with maternal antibodies. Vaccine 10: 363-365, 1992a. Kimman T. G., De Bruin T. M., Voermans J. J., Peeters B. P. and Bianchi A. T. Development and antigen specificity of the lymphoproliferation responses of pigs to pseudorabies virus: dichotomy between secondary B- and T-cell responses. Immunology 86: 372-378, 1995. Kimman T. G., Oei-Lie N. and van Zaane D. Role of memory B-cell responses in serum and mucosal fluids of swine for protective immunity against pseudorabies virus. Am J Vet Res 53: 1992-1998, 1992b. Kit S., Sheppard M., Ichimura H. and Kit M. Second-generation pseudorabies virus vaccine with deletions in thymidine kinase and glycoprotein genes. Am J Vet Res 48: 780-793, 1987. Kluge J. P., Beran G. W., Hill H. T. and Platt K. B. Pseudorabies. In: Disease of Swine. 8th edi. Edited by Straw, B.E. etc. p: 233-246, 1999. Kluge J. P. and Mare C. J. Natural and experimental in utero infection of piglets with Aujeszky''s disease (pseudorabies) virus. Am Assoc Vet Lab Diagn 21: 15-24, 1978. Koenen F., Vanopdenbosch E., Wellemans G., Palate B., Caij A. and De Smet A. Bovine viral diarrhoea vaccination fails to protect pigs against classical swine fever challenfe, VI. Tijdschrift voor Diergeneeskund 57: 398-404, 1998. Konig M., Lengsfeld T., Pauly T., Stark R. and Thiel H. J. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol 69: 6479-6486, 1995. Koprowski H., James T. R. and Cox H. R. Propagation of hog cholera virus in rabbits. Proc Soc Exp Biol Med 63: 178-183, 1946. Kritas S. K., Pensaert M. B. and Mettenleiter T. C. Role of envelope glycoproteins gI, gp63 and gIII in the invasion and spread of Aujeszky''s disease virus in the olfactory nervous pathway of the pig. J Gen Virol 75 ( Pt 9): 2319-2327, 1994. Lee W. C., Liu C. I. and Wang J. T. Lymphoid tissue pathology and effect of immunosuppression in pigs infected with pseudorabies virus. J Chin Soc Vet Sci 12: 15-23, 1986. Liang R., van den Hurk J. V., Zheng C., Yu H., Pontarollo R. A., Babiuk L. A. and van Drunen Littel-van den Hurk S. Immunization with plasmid DNA encoding a truncated, secreted form of the bovine viral diarrhea virus E2 protein elicits strong humoral and cellular immune responses. Vaccine 23: 5252-5262, 2005. Lin G. J., Liu T. Y., Tseng Y. Y., Chen Z. W., You C. C., Hsuan S. L., Chien M. S. and Huang C. Yeast-expressed classical swine fever virus glycoprotein E2 induces a protective immune response. Vet Microbiol 139: 369-374, 2009. Lin K. F., Chiu T. C., Jong M. H., Lin Y. P. and Liu Y. H. The distribution of the neutralizing antibody against pseudorabies from slaughter pigs in Taiwan region. Research Institue for Animal Health, Ann Rep 13: 53-56, 1976. Lin S. C., Tung M. C., Liu C. I., Chang C. F., Huang W. C. and Cheng C. M. An outbreak of pseudorabies in swine in Pingtung. Zhonghua Min Guo Wei Sheng Wu Xue Za Zhi 5: 56-68, 1972. Lin Y. J., Chien M. S., Deng M. C. and Huang C. C. Complete sequence of a subgroup 3.4 strain of classical swine fever virus from Taiwan. Virus Genes 35: 737-744, 2007. Lindenbach B. D. and Rice C. M. Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73: 4611-4621, 1999. Lomniczi B., Watanabe S., Ben-Porat T. and Kaplan A. S. Genetic basis of the neurovirulence of pseudorabies virus. J Virol 52: 198-205, 1984. Maes R. K., Sussman M. D., Vilnis A. and Thacker B. J. Recent developments in latency and recombination of Aujeszky''s disease (pseudorabies) virus. Vet Microbiol 55: 13-27, 1997. Marchioli C. C., Yancey R. J., Jr., Wardley R. C., Thomsen D. R. and Post L. E. A vaccine strain of pseudorabies virus with deletions in the thymidine kinase and glycoprotein X genes. Am J Vet Res 48: 1577-1583, 1987. Martin S., Wardley R. C. and Donaldson A. I. Serological response of pigs infected with Aujeszky''s disease virus. Res Vet Sci 35: 227-233, 1983. Martins C. L., Lawman M. J., Scholl T., Mebus C. A. and Lunney J. K. African swine fever virus specific porcine cytotoxic T cell activity. Arch Virol 129: 211-225, 1993. Maurer R., Stettler P., Ruggli N., Hofmann M. A. and Tratschin J. D. Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV. Vaccine 23: 3318-3328, 2005. McFerran J. B. and Dow C. The excretion of Aujeszky''s disease virus by experimentally infected pigs. Res. Vet. Sci. 5: 405-410, 1964. McFerran J. B., McCracken R. M. and Dow C. Comparative studies with inactivated and attenuated vaccines for protection of fattening pigs. . Vet. Med. Anim. Sci. 17: 163-170, 1982. McGinley M. J. and Platt K. B. Studies on the ability of a 98-kilodalton pseudorabies virus diagnostic antigen to detect latent infections induced by low-dose exposure to the virus. Am J Vet Res 49: 1489-1493, 1988. McInerney J. and Kooij D. Economic analysis of alternative AD control programmes. Vet Microbiol 55: 113-121, 1997. Mettenleiter T. C. Aujeszky''s disease (pseudorabies) virus: the virus and molecular pathogenesis--state of the art, June 1999. Vet Res 31: 99-115, 2000. Mettenleiter T. C. Immunobiology of pseudorabies (Aujeszky''s disease). Vet Immunol Immunopathol 54: 221-229, 1996. Mettenleiter T. C. Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle. Vet Microbiol 113: 163-169, 2006. Mettenleiter T. C. Molecular biology of pseudorabies (Aujeszky''s disease) virus. Comp Immunol Microbiol Infect Dis 14: 151-163, 1991. Meyers G. and Thiel H. J. Molecular characterization of pestiviruses. Adv Virus Res 47: 53-118, 1996. Miller G. Y., Forster D. L., Tsai J. and Bowman G. Productivity and profitability differences between pseudorabies-infected and pseudorabies-noninfected farrow-to-finish swine herds. J Am Vet Med Assoc 206: 446-451, 1995. Mittelholzer C., Moser C., Tratschin J. D. and Hofmann M. A. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol 74: 293-308, 2000. Moennig V. Introduction to classical swine fever: virus, disease and control policy. Vet Microbiol 73: 93-102, 2000. Moennig V., Floegel-Niesmann G. and Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J 165: 11-20, 2003. Moormann R. J. and Hulst M. M. Hog cholera virus: identification and characterization of the viral RNA and the virus-specific RNA synthesized in infected swine kidney cells. Virus Res 11: 281-291, 1988. Moormann R. J., van Gennip H. G., Miedema G. K., Hulst M. M. and van Rijn P. A. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J Virol 70: 763-770, 1996. Mukamoto M., Watanabe I., Kobayashi Y., Icatlo F. C., Jr., Ishii H. and Kodama Y. Immunogenicity in Aujeszky''s disease virus structural glycoprotein gVI (gp50) in swine. Vet Microbiol 29: 109-121, 1991. Mulder W., Pol J., Kimman T., Kok G., Priem J. and Peeters B. Glycoprotein D-negative pseudorabies virus can spread transneuronally via direct neuron-to-neuron transmission in its natural host, the pig, but not after additional inactivation of gE or gI. J Virol 70: 2191-2200, 1996. Muller T., Batza H. J., Schluter H., Conraths F. J. and Mettenleiter T. C. Eradication of Aujeszky''s disease in Germany. J Vet Med B Infect Dis Vet Public Health 50: 207-213, 2003. Narita M., Kawashima K., Kimura K., Mikami O., Shibahara T., Yamada S. and Sakoda Y. Comparative immunohistopathology in pigs infected with highly virulent or less virulent strains of hog cholera virus. Vet Pathol 37: 402-408, 2000. Narita M., Kimura K., Tanimura N. and Ozaki H. Immunohistochemical detection of hog cholera virus antigen in paraffin wax-embedded tissues from naturally infected pigs. J Comp Pathol 121: 283-286, 1999. Nauwynck H. J. Functional aspects of Aujeszky''s disease (pseudorabies) viral proteins with relation to invasion, virulence and immunogenicity. Vet Microbiol 55: 3-11, 1997. Newcomb W. W., Homa F. L., Thomsen D. R., Trus B. L., Cheng N., Steven A., Booy F. and Brown J. C. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J Virol 73: 4239-4250, 1999. OIE. 2008. Peeters B., Bienkowska-Szewczyk K., Hulst M., Gielkens A. and Kimman T. Biologically safe, non-transmissible pseudorabies virus vector vaccine protects pigs against both Aujeszky''s disease and classical swine fever. J Gen Virol 78 ( Pt 12): 3311-3315, 1997. Piriou L., Chevallier S., Hutet E., Charley B., Le Potier M. F. and Albina E. Humoral and cell-mediated immune responses of d/d histocompatible pigs against classical swine fever (CSF) virus. Vet Res 34: 389-404, 2003. Pirtle E. C., Wathen M. W., Paul P. S., Mengeling W. L. and Sacks J. M. Evaluation of field isolates of pseudorabies (Aujeszky''s disease) virus as determined by restriction endonuclease analysis and hybridization. Am J Vet Res 45: 1906-1912, 1984. Pol J. M., Gielkens A. L. and van Oirschot J. T. Comparative pathogenesis of three strains of pseudorabies virus in pigs. Microb Pathog 7: 361-371, 1989. Priola S. A. and Stevens J. G. The 5'' and 3'' limits of transcription in the pseudorabies virus latency associated transcription unit. Virology 182: 852-856, 1991. Quint W., Gielkens A., Van Oirschot J., Berns A. and Cuypers H. T. Construction and characterization of deletion mutants of pseudorabies virus: a new generation of ''live'' vaccines. J Gen Virol 68 ( Pt 2): 523-534, 1987. Reddehase M. J., Rothbard J. B. and Koszinowski U. H. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337: 651-653, 1989. Reimann I., Depner K., Trapp S. and Beer M. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus. Virology 322: 143-157, 2004. Ribbens S., Dewulf J., Koenen F., Laevens H., Mintiens K. and de Kruif A. An experimental infection (II) to investigate the importance of indirect classical swine fever virus transmission by excretions and secretions of infected weaner pigs. J Vet Med B Infect Dis Vet Public Health 51: 438-442, 2004. Rumenapf T., Unger G., Strauss J. H. and Thiel H. J. Processing of the envelope glycoproteins of pestiviruses. J Virol 67: 3288-3294, 1993. Sabini L., Zanon S., Lara L., Torres C., Sutil S., Rovera M. and Ramos B. Study of Pseudorabies Virus, RC/79 Strain, Virulence Markers. Rev. Latino. de. Micro. 42: 111-116, 2000. Sakano T., Shibata I., Samegai Y., Taneda A., Okada M., Irisawa T. and Sato S. Experimental pneumonia of pigs infected with Aujeszky''s disease virus and Actinobacillus pleuropneumoniae. J Vet Med Sci 55: 575-579, 1993. Sato M., Mikami O., Kobayashi M. and Nakajima Y. Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus. Vet Microbiol 75: 1-9, 2000. Shibata I., Okada M., Urono K., Samegai Y., Ono M., Sakano T. and Sato S. Experimental dual infection of cesarean-derived, colostrum-deprived pigs with Mycoplasma hyopneumoniae and pseudorabies virus. J Vet Med Sci 60: 295-300, 1998. Stegeman A. Pseudorabies virus eradication by area-wide vaccination is feasible. Vet Q 17: 150-156, 1995. Stellmann C., Vannier P., Chappuis G., Brun A., Dauvergne M., Fargeaud D., Bugand M. and Colson X. The potency testing of pseudorabies vaccines in pigs. A proposal for a quantitative criterion and a minimum requirement. J Biol Stand 17: 17-27, 1989. Summerfield A., Knotig S. M. and McCullough K. C. Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J Virol 72: 1853-1861, 1998. Summerfield A., McNeilly F., Walker I., Allan G., Knoetig S. M. and McCullough K. C. Depletion of CD4(+) and CD8(high+) T-cells before the onset of viraemia during classical swine fever. Vet Immunol Immunopathol 78: 3-19, 2001. Suradhat S., Intrakamhaeng M. and Damrongwatanapokin S. The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection. Vet Immunol Immunopathol 83: 177-189, 2001. Susa M., Konig M., Saalmuller A., Reddehase M. J. and Thiel H. J. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J Virol 66: 1171-1175, 1992. Szweda W., Lipowski A., Baczek W., Dadun M., Platt-Samoraj A. and Siemionek J. The results of Aujeszky''s disease virus elimination from pig farms after 5 years of implementing the "vaccination-eradication programme.". Med Weter 56: 386-391, 2000a. Szweda W., Lipowski A., Baczek W., Platt-Samoraj A. and Siemionek J. The efficacy of the vaccination-eradication programme in maintaining a pig farm''s status as being free from Aujeszky''s disease virus. Med Weter 56: 447-451, 2000b. Tamura J. K., Warrener P. and Collett M. S. RNA-stimulated NTPase activity associated with the p80 protein of the pestivirus bovine viral diarrhea virus. Virology 193: 1-10, 1993. Tang D. C., DeVit M. and Johnston S. A. Genetic immunization is a simple method for eliciting an immune response. Nature 356: 152-154, 1992. Terpstra C. Classical swine fever (hog cholera). In: Manual of Standards for Diagnostic Tests and Vaccines. 4th edi. Office International des Epizooties, World Organisation for Animal Health. p: 202-203, 2000a. Terpstra C. De immuniteit tegen besmetting met varkenspestivirus van biggen geboren uit met C-vaccin geënte zeugen. Tijdschrift voor. Diergeneeskunde 102: 1293-1298, 1977. Terpstra C. Hog cholera: an update of present knowledge. Br Vet J 147: 397-406, 1991. Terpstra C. and de Smit A. J. The 1997/1998 epizootic of swine fever in the Netherlands: control strategies under a non-vaccination regimen. Vet Microbiol 77: 3-15, 2000b. Terpstra C. and Tielen M. J. Antibody response against swine fever following vaccination with C-strain virus. Zentralbl Veterinarmed B 23: 809-821, 1976. Terpstra C., Woortmeyer R. and Barteling S. J. Development and properties of a cell culture produced vaccine for hog cholera based on the Chinese strain. Dtsch Tierarztl Wochenschr 97: 77-79, 1990. Terzic S., Jemersic L., Lojkic M., Madic J., Grom J., Toplak I., Sver L. and Valpotic I. Comparison of antibody values in sera of pigs vaccinated with a subunit or an attenuated vaccine against classical swine fever. Vet Res Commun 27: 329-339, 2003. Thawley D. G., Solorzano R. F. and Johnson M. E. Confirmation of pseudorabies virus infection, using virus recrudescence by dexamethasone treatment and in vitro lymphocyte stimulation. Am J Vet Res 45: 981-983, 1984. Thiel H. J., Stark R., Weiland E., Rumenapf T. and Meyers G. Hog cholera virus: molecular composition of virions from a pestivirus. J Virol 65: 4705-4712, 1991. Tigges M. A., Koelle D., Hartog K., Sekulovich R. E., Corey L. and Burke R. L. Human CD8+ herpes simplex virus-specific cytotoxic T-lymphocyte clones recognize diverse virion protein antigens. J Virol 66: 1622-1634, 1992. Tighe H., Corr M., Roman M. and Raz E. Gene vaccination: plasmid DNA is more than just a blueprint. Immunol Today 19: 89-97, 1998. Toma B., Haddad N. and Vannier P. Aujeszky''s disease. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 5th edi., Part II. Office International des Epizooties, World Organisation for Animal Health. p: 295-307, 2004. Trautwein G. Classical swine fever and related infections. Boston: Martinus Nijhoff Publishing, 1988. Tsuda T., Onodera T., Sugimura T. and Murakami Y. Induction of protective immunity and neutralizing antibodies to pseudorabies virus by immunization of anti-idiotypic antibodies. Arch Virol 124: 291-300, 1992. van Gennip H. G. P., Bouma A., van Rijn P. A., Widjojoatmodjo M. N. and Moormann R. J. M. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E-rns or E2 of CSFV. Vaccine 20: 1544-1556, 2002. van Gennip H. G. P., van Rijn P. A., Widjojoatmodjo M. N., de Smit A. J. and Moormann R. J. M. Chimeric classical swine fever viruses containing envelope protein E-RNS or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine 19: 447-459, 2000. Van Minnebruggen G., Favoreel H. W., Jacobs L. and Nauwynck H. J. Pseudorabies virus US3 protein kinase mediates actin stress fiber breakdown. J Virol 77: 9074-9080, 2003. Van Nes A., Stegeman J. A., De Jong M. C., Loeffen W. L., Kimman T. G. and Verheijden J. H. No major outbreaks of pseudorabies virus in well-immunized sow herds. Vaccine 14: 1042-1044, 1996. van Oirschot J. J. Hog cholera. In: Disease of swine. 7th edi. Edited by Mengeling, W. L. etc. p: 274-284, 1992. van Oirschot J. T. Diva vaccines that reduce virus transmission. J Biotechnol. 73: 195-205, 1999. van Oirschot J. T. Vaccinology of classical swine fever: from lab to field. Vet Microbiol 96: 367-384, 2003. van Oirschot J. T. and de Leeuw P. W. Intranasal vaccination of pigs against Aujeszky''s disease. 4. Comparison with one or two doses of an inactivated vaccine in pigs with moderate maternal antibody titres. Vet Microbiol 10: 401-408, 1985. van Oirschot J. T., Gielkens A. L., Moormann R. J. and Berns A. J. Marker vaccines, virus protein-specific antibody assays and the control of Aujeszky''s disease. Vet Microbiol 23: 85-101, 1990. van Rooij E. M., de Bruin M. G., de Visser Y. E., Middel W. G., Boersma W. J. and Bianchi A. T. Vaccine-induced T cell-mediated immunity plays a critical role in early protection against pseudorabies virus (suid herpes virus type 1) infection in pigs. Vet Immunol Immunopathol 99: 113-125, 2004. van Rooij E. M. A., Haagmans B. L., Glansbeek H. L., de Visser Y. E., de Bruin M. G. M
豬瘟 (Classical Swine Fever;CSF) 及假性狂犬病 (Pseudorabies;PR) 皆為高度傳染的病毒性疾病,均對養豬產業造成極重大之經濟損失,因此防治及清除這兩個重大豬病為我國重要之防疫主軸與目標,而開發兼具安全性與高免疫保護效力之標誌疫苗 (marker vaccine) 則顯得格外迫切與重要。本試驗則進一步應用實驗室先前所構築之重組桿狀病毒表現豬瘟E2次單位重組蛋白,與gE基因缺損假性狂犬病不活化病毒開發E2PRV雙價疫苗,並評估其免疫保護效力。實驗首先分別以小鼠與兔子等動物模式來評估E2PRV雙價疫苗的安全性與對PR病毒之免疫保護效力。結果顯示E2PRV雙價疫苗分別在小鼠與兔子中均有高度之安全性,而試驗小鼠經兩次免疫後第21天,以PRV強毒株進行攻毒後,證實E2PRV雙價疫苗對致死劑量之PR病毒攻擊具有良好之保護性。進一步於兔子所進行之免疫效力試驗中,經免疫兩次後免疫組所產生對CSFV和PRV平均中和抗體力價顯著上升,再以100倍LD50 PRV強毒株攻毒後,其半致死防禦劑量 (50% protection dosage) 低於1/3免疫劑量。此外,為了比較豬隻免疫雙價疫苗與同時分別免疫各單價疫苗之效力評估,將實驗組豬隻分為三組,分別為以肌肉注射方式免疫雙價疫苗組 (E2PRV)、於不同部位同時免疫豬瘟E2次單位疫苗和假性狂犬病gE缺損不活化疫苗組 (E2+PRV)、及免疫生理食鹽水的對照組;豬隻在八、十一週齡各免疫一次,於十四週齡以PRV強毒株進行鼻腔攻毒。試驗結果顯示在PRV攻毒後,免疫組豬隻都有零星不等程度之發燒症狀但無顯著性差異,而在平均日增重上,分別免疫單價疫苗組則略優於免疫E2PRV雙價疫苗及對照組;攝食量方面,雙價疫苗組及對照組雖在攻毒後一週呈現食慾減退,但E2PRV組在攻毒後第二週食慾有逐漸恢復之情形。於呼吸道症狀的臨床評分上,免疫單價疫苗組呼吸症狀均較雙價疫苗組及對照組輕微。但所有免疫組豬隻則在第二次免疫後三週,豬隻血清抗CSFV及PRV中和抗體皆顯著性揚升,而單價疫苗免疫組在PRV攻毒後PR抗體揚升情形則較顯著。所有試驗豬隻於剖檢時雖有不等程度之病理變化,但未免疫對照組則呈現較嚴重之組織學病變。上述實驗結果顯示,豬瘟E2重組次單位蛋白與假性狂犬病gE缺損不活化雙價疫苗具有良好安全性及免疫保護效力,但在相同抗原量時,分別各免疫單價疫苗組較免疫雙價疫苗組有較佳的免疫保護效力。

Classical swine fever (CSF) and Pseudorabies (PR) both are highly contagious viral diseases of swine and can cause significant economic loss in the pig industry. The development of one efficient as well as a marker vaccine to discriminate of immunized and infected pigs is an important task to control and eradicate both of these diseases. In this trial, baculovirus expression system was utilized for expression the recombinant CSFV E2 subunit antigen and following incorporated with inactive gE deleted PRV to develop bivalent E2PRV vaccine. Both mice and rabbit animal models were applied to evaluate safety and protective efficacy of this unique bivalent E2PRV vaccine. The BALB/c mice were immunized twice with E2PRV vaccine with 21 days apart, and followed by challenging with PRV. The protection index (PI) indicated good protective immunity. In addition, the mean neutralizing antibody titers against CSFV and PRV significantly elevated from rabbits immunized with twice of bivalent vaccine. After challenging with 100×LD50 PRV TNL strain, the 50% protective dosage was less than 1/3 dose. Moreover, in order to understand the variation of protective efficacy between immunized with bivalent vaccine or applied both univalent E2 subunit and PRV vaccine immunized individually but at same time. All eight-week-old experimental pigs were vaccinated twice at intervals of 3 weeks and among them, one group were vaccinated intramuscularly with both CSFV E2 subunit vaccine and PR inactivated vaccine, another group was vaccinated with E2PRV bivalent vaccine, and a third group was vaccinated with only normal saline as control. All pigs were challenged with PRV 3weeks after the second vaccination. Clinical symptoms including body temperature and daily weight gain and pathological changes were recorded for comparison. All groups of pigs showed only mild of clinical signs of a little fluctuated of body temperature with no variation after challenge; but in the average daily weight gain, pigs immunized with both univalent vaccines were better than bivalent immunized and control groups. Although appetite had decreased slightly on bivalent vaccinated group in the first week after challenge, all pigs recovered promptly in the second week. To further evaluation the clinical signs of the respiratory system, the scores of univalent vaccinated group was also lower than bivalent and control groups. However, both groups of vaccine immunized pigs can mount good protective immunity and the mean neutralizing antibody titers of CSFV and PRV significantly elevated after twice vaccination before challenge. The control group appeared typical lesions of PRV infection with more severe histopathological changes in nervous system after challenge. The results indicated that E2PRV bivalent vaccine is safe and can elicit good protective immunity as both univalent vaccines on protective efficacy with a minimum dosage of antigen after PRV challenge.
其他識別: U0005-1908201118541700
Appears in Collections:獸醫病理生物學所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.