Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorWun-Jyun Chenen_US
dc.contributorChao-Fu Linen_US
dc.contributorJea-Tzyy Juaen_US
dc.contributor.advisorChing-Piao Tsaien_US
dc.contributor.authorHong, Chin-Wenen_US
dc.identifier.citation參考文獻 1.Coplend, G. J. M., “A practical alternative to mild-slope wave equation,” Coastal Engineering, 9, pp.125-149 (1985). 2.Ebersole, B.A., Cialone, and Prater, M.D., “Regional coastal processes numerical modeling system ,” Report 1,RCPWAVE-A Linewave Propogation Model for Engineering Use, Technical Report CERC-86-4. Coastal Engineering Research Center, U.S. Army Corps of Engineerings, Waterways Experiment Station, MS (1986). 3.Goda, Y., “Irregular wave deformation in the surf zone,” Coastal Engineering in Japan, 18, pp.13-26 (1975).. 4.Hur, D. S. and Mizutani, N., “Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater,” Coastal Engineering, 47, pp. 329-345 (2003). 5.Hur, D. S., “Deformation of multi-directional random waves passing over an impermeable submerged breakwater installed on a sloping bed,” Ocean Engineering, 31(10), pp.1295-1311 (2004). 6.Johnson, H. K., Karambas, T. V., Avgeris, I., Zanuttigh, B., Gonzalez- Marco, D. and Caceres, I., “Modelling of waves and currents around submerged breakwaters,” Coastal Engineering Vol. 52, pp. 949-969 (2005). 7.Kawasaki, K., “Numerical simulation of breaking and post-breaking wave deformation process around a submerged breakwater,” Coastal Engineering in Japan, 41, pp. 201-223 (1999). 8.Komar, P. H. and Inman, D. L., “Longshore sand transport on beaches,” Journal of Geophysical Research, 75, pp.5914-5927, (1970). 9.Longuet-Higgins, M. S. and Stewart, R. W., “Radiation stress in water wave – a physical discussion with applications, ”Deep-Sea Research, 11(4), pp. 13-26, (1964). 10.Longuet-Higgins, M. S., “Longshore current generated by obliquely incident sea wave,” Journal of Geophysical Research, 75(33), pp.6778-6801 (1970). 11.Losada, I. J., Silva, R. and Losada, M. A., “3-D non-breaking regular wave interaction with submerged breakwater,” Coastal Engineering, 28, pp. 229-248 (1996). 12.Ozasa, H. and Brampton, A. H., “Mathematical modeling of beaches backed by seawells,” Coastal Engineering, 14, pp.47-64 (1980). 13.Rambabu, A. C. and Mani, J. S., “Numerical prediction of performance of submerged breakwater,” Ocean Engineering, 32(10), pp. 1235-1246 (2005). 14.Rojanakamthorn, Isobe & Watanabe, “A mathematical model of wave transformation over a submerged breakwater,” Coastal Engineering in Japan, 32(2 ), pp.209-234 (1989). 15.Shuto, N., “Nonlinear long wave in a channel of variable section,” Coastal Engineering in Japan, 17, pp. 1-12 (1974). 16.Tsai, C. P., Chen, H. B. and Hsu, J. R. C., “Calculations of wave transformation across the surf zone,” Ocean Engineering, 28(8), pp.941-955 (2001). 17.Tsai, C. P., Chen, H. B. and Lee, F. C., “Wave transformation over submerged breakwater on porous bottom,” Ocean Engineering, 33(8), pp. 1623-1643 (2006). 18.Watanabe, A. and Maruyama, K., “Numerical modeling of nearshore wave field under combined refraction, diffraction and breaking,” Coastal Engineering in Japan, 29, pp .19-39 (1986).zh_TW
dc.description.abstract摘要 離岸潛堤後方波高變化與碎波情形,為預測灘線之重要關鍵,但預測離岸潛堤後方灘線變遷之相關文獻極少。本研究即利用數值模擬的方式,計算離岸潛堤背側波場特性,並探討離岸潛堤在不同沒水深度、潛堤寬度及深海波向角之情況下,對堤後方波高及碎波變化影響之情形,並與Watanabe et al.(1986)做比較驗證。結果顯示,當入射波浪通過離岸潛堤,隨著潛堤沒水高度增加,造成潛堤消能效果降低,故堤後繞射較不明顯,且隨著潛堤寬度增加波高衰減會愈多。另外,由於深海入射角亦影響堤後波高衰減,且對於碎波位置之影響隨消波效益不同而不同,而碎波波高梯度之峰值略有偏移之趨勢。本文亦依據堤後碎波波高梯度計算堤後沿岸輸砂量變化之特性,結果發現沒水深度愈深,堤後沿岸輸砂量之變化愈顯著,故較不易形成砂舌或陸繫沙洲。zh_TW
dc.description.abstractABSTRACT The situations of the wave height changed and wave breaking behind a detached submerged breakwater, is the key to predict shoreline. In this study, a numerical simulation model was established to calculated the wave field. In the numerical simulations, various combinations of wave conditions and the breakwater submerged geometric conditions were calculated to explore the wave height behind detached submerged breakwater. The comparison with the case of Watanabe in 1986 has good agreement. The numerical results indicated that the wave energy decays less and the diffraction is not obvious with the submerged depth increasing. It was also shown that broaden breakwater width the wave height decayed much. The wave incident angle also affects wave height, breaking line and the peak of gradient of breaking height shifts. This paper is also depended on the gradient of breaking height to count the property of alongshore sediment transport. It shows that the submerged depth is deeper the alongshore sediment is less and to form salient or tombolo is harder.en_US
dc.description.tableofcontents目錄 摘要 Ⅰ ABSTRACT Ⅱ 目錄 Ⅲ 圖目錄 Ⅴ 符號說明 Ⅶ 第一章 前言 1 1-1 研究動機與目的 1 1-2 文獻回顧 1 1-3 本文組織 3 第二章 數值計算模式之建立 5 2-1 波場數值模式 5 2-2 基本控制方程式 6 2-3 碎波控制指標 7 2-4 邊界條件 8 2-5 數值計算方法 9 第三章 計算結果與分析 10 3-1 計算條件 10 3-2 模式驗證及比較 10 3-3 波高分佈特性 11 3-3.1沒水深度之影響 11 3-3.2入射角之影響 12 3-3.3寬度之影響 13 3-4 碎波及沿岸輸砂分佈特性 14 3-4.1沒水深度之影響 14 3-4.2入射角之影響 15 3-4.3寬度之影響 15 第四章 結論與建議 17 結論 17 建議 17 參考文獻 19zh_TW
dc.subjectsubmerged breakwateren_US
dc.subjectwave heighten_US
dc.subjectwave breakingen_US
dc.titleNumerical Simulation of Wave Height Changes behind Submerged Breakwateren_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:土木工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.