Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15396
標題: 國產基因改造木瓜回交果實於分子鑑定與安全性之評估
Molecular Identification and Safety Evaluation of Backcross Genetically Modified Papaya Fruits in Taiwan
作者: 黃婷姿
Huang, Ting-Tzu
關鍵字: genetically modified;基因改造;papaya;molecular identification;safety assessment;木瓜;分子鑑定;安全性
出版社: 獸醫病理生物學研究所
引用: 尤宗富、林世敏、鄧宇翔、溫銘嘉、葉錫東、包慧俊。木瓜輪點病毒鞘蛋白基因轉殖木瓜果實內鞘蛋白基因表現之探討。台灣農化與食品。42: 466-473。2004。 全秀華。木瓜的營養成分-養顏珍品。 <http://www.canceraway.org.tw/PreventCancer_Show.asp?AppCode=SITEPAGES&ID=341 >。2004。 行政院農業委員會。糧食供需年報。2009。 行政院衛生署。基因改造食品安全性評估方法。2010。 行政院衛生署。健康食品安全及功效評估方法。1999。 行政院衛生署。認識基因改造食品。<http://consumer.fda.gov.tw/Pages/Detail.aspx?nodeID=83&pid=372>。2010。 行政院衛生署。通過衛生署食品安全審查的基因改造食品。2011。 余祈偉。基因轉殖植物之全球發展趨勢。植物種苗生技9:1-9,2007。 沈永紹。獸醫實驗診斷學提要第五版。華香園。2004。 林怡絹。國產基因改造木瓜之基因毒理和動物毒理安全性評估。國立中興大學獸醫病理生物學研究所碩士論文。2009。 胡仲祺、張世忠。RNA干擾技術在動植物病毒病害防治之應用。農政與農情158。2005。 柯建志。輻射屋居民之染色體變異分析與劑量之評估。碩士論文。國立陽明大學放射醫學科學研究所。台北市。2001。 徐慈鴻、李貽華、李國欽。基轉植物之生物安全性評估及管理。植物保護管理永續發展研討會專刊。值保學會特刊第5號。171-194。2003。 郭華仁、陳郁蕙、詹滿色、高文彥。基因改造植物研發之法規、風險及經濟效益分析。科學農業58:155‐161,2007。 陳信明。基因改造食品研究計畫。< http://singming.kgame.tw/ntit/index.html>。2003。 曾秋隆。曾氏獸醫臨床病理學。偉明圖書有限公司。台北。2005。 游碧堉。姊妹子染色體交換測試法。化學物質遺傳毒性之簡易測試法。行政院農委會農業藥物毒物試驗所。台中。1987。 劉雨芳、劉文海、賀玲、李自君。湖南科技大學學報。23(4): 111-117。2008。 Ames B. N., McCann J. and Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31: 347-364, 1975. Appenzeller L. M., Munley S. M., Hoban D., Sykes G. P. and Malley L. A. Subchronic feeding study of grain from herbicide-tolerant maize DP-&Oslash;9814&Oslash;-6 in Sprague-Dawley rats. Food Chem Toxicol 47: 2269-2280, 2009. Atherton K. T. Safety assessment of genetically modified crops. Toxicology 181-182: 421-426, 2002. Bakke-McKellep A. M., Koppang E. O., Gunnes G., Sanden M., Hemre G. I., Landsverk T. and Krogdahl A. Histological, digestive, metabolic, hormonal and some immune factor responses in Atlantic salmon, Salmo salar L., fed genetically modified soybeans. J Fish Dis 30: 65-79, 2007. Bau H. J., Cheng Y. H., Yu T. A., Yang J. S., Liou P. C., Hsiao C. H., Lin C. Y. and Yeh S. D. Field evaluation of transgenic papaya lines carrying the coat protein gene of Papaya ringspot virus in Taiwan. Plant Dis. 88: 594-599, 2004. Bau H. J., Cheng Y. H., Yu T. A., Yang J. S. and Yeh S. D. Broad-Spectrum Resistance to Different Geographic Strains of Papaya ringspot virus in Coat Protein Gene Transgenic Papaya. Phytopathology 93: 112-120, 2003. Bau H. J., Cheng Y. H., Yu T. A., Yang J. S. and Yeh S. D. Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein transgenic papaya. Phytopathology 93: 112-120, 2003. Cai W., Gomsalves C., Tennant P., Fermin G., Souza M., Sarindu N., Jan F. J., Zhu H. L. and Gonsalves D. A protocol for efficiant transformation and regeneration of Carica papaya L. . In Vitro Cell Dev Biol Plant 35: 61-69, 1999. Chen Z. L., Gu H., Li Y., Su Y., Wu P., Jiang Z., Ming X., Tian J., Pan N. and Qu L. J. Safety assessment for genetically modified sweet pepper and tomato. Toxicol. 188: 297-307, 2003. Chiang C. H., Wang J. J., Jan F. J., Yeh S. D. and Gonsalves D. Comparative reactions of combination Papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CP-transgenic papaya. J Gen Virol 82: 2827-2836, 2001. Codex. Principles for the risk analysis of food derived from modern biotechnology (CAC/GL 44-200). Codex alimentarius commission. Codex ad hoc intergovernmental task force on food derived from biotechnology, Yokohama, Japan. 2003. Davis M. and Ying Z. Development of papaya breeding lines with transgenic resistance to Papaya ringspot virus. Plant Dis 88: 358-362, 2004. Dertinger S. D., Bishop M. E., McNamee J. P., Hayashi M., Suzuki T., Asano N., Nakajima M., Saito J., Moore M., Torous D. K. and Macgregor J. T. Flow cytometric analysis of micronuclei in peripheral blood reticulocytes: I. Intra- and interlaboratory comparison with microscopic scoring. Toxicol Sci 94: 83-91, 2006. Dona A. and Arvanitoyannis I. S. Health risks of genetically modified foods. Crit Rev Food Sci Nutr 49: 164-175, 2009. EFSA. GMO Panel Working Group on Animal Feeding Trials. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol 46 (suppl. 41), S42-S70, 2008. EFSA. Statement on the fate of recombinant DNA or proteins in meat, milk and eggs from animals fed with GM feed. 2007. Fan M. J., Chen S., Kung Y. J., Cheng Y. H., Bau H. J., Su T. T. and Yeh S. D. Transgene-specific and event-specific molecular markers for characterization of transgenic papaya lines resistant to Papaya ringspot virus. Transgenic Res 18: 971-986, 2009. Fermin G. Use, application and technology tranfer if native and synthetic genes to engineering single and multiple transgenic viral resistance. PhD thesis, Cornell University. Ithaca, NY, USA, 293 pp. 2002. Fermin G., Inglessis V., Garboza C., Rangel S., Dagert M. and Gonsalves D. Engineered resistance against PRSV in Venezuelan transgenic papayas. Plant Dis 88: 516-522, 2004. Fermin G. A., Castro L. T. and Tennant P. F. CP-transgenic and non-transgenic approaches for the control of Papaya ringspot: current situation and challenges Transgenic Plant J 4: 1-15, 2010. Fitch M., Manshardt R., Gonsalves D., Slightom J. and Sanford L. Virus resistant papaya derived from tissues bombarded with the coat protein gene of Papaya ringspot virus. Nature Biotechnology 10: 1466-1472, 1992. Fitch M. M. M., Manshardt R. M., Gonsalves D. and Slightom J. L. Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 12: 245-249, 1993. Fu T. J., Abbott U. R. and Hatzos C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid-a comparative study. J Agric Food Chem 50: 7154-7160, 2002. Giknis M. L. A. and Clifford C. B. Clinical laboratory parameters for Crl:WI (Han). Charles River Laboratories1-17, 2008. Gonsalves D., Suzuki J. Y., Tripathi S. and Ferreira S. A. Papaya ringspot virus. USDA gov.250-257, 2010. Gosselin R. E., Hodge H. C. and Gleason M. N. Clinical toxicology of commercial products: acute poisoning. 5th ed., 1984. Hayashi M., Morita T., Kodama Y., Sofuni T. and Ishidate M., Jr. The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutat Res 245: 245-249, 1990. ISAAA. Global status of commercialized biotech/GM crops: 2010. <http://www.isaaa.org/resources/publications/briefs/42/executivesummary/default.asp>, 2010. Kalleshwaraswamy C. M. and Krishna K. N. K. Transmission efficiency of Papaya ringspot virus by three aphid species. Phytopathology 98: 541-546, 2008. Kertbundit S., Pongtanom N., Ruanjan P., Chantasingh D., Tanwanchai A., Panyim S. and Juricek M. Resistance of transgenic papaya plants to Papaya ringspot virus. Biologia Plantarum 51: 333-339, 2007. Kodama T., Kasahara M., Minegishi Y., Futo S., Sawada C., Watai M., Akiyama H., Teshima R., Kurosawa Y., Furui S., Hino A. and Kitta K. Qualitative PCR method for Roundup Ready soybean: interlaboratory study. J AOAC Int 94: 224-231, 2011. Kok E. J. and Kuiper H. A. Comparative safety assessment for biotech crops. Trends Biotechnol 21: 439-444, 2003. Krishna G. and Hayashi M. In vivo rodent micronucleus assay: protocol, conduct and data interpretation. Mutat Res 455: 155-166, 2000. Lima R. C. A., Lima J. A. A., Souza J. M. T., Pio-Ribeiro G. and Andrade G. P. Etiologia e estrat&eacute;gias de controle de viroses do mamoeiro no brasil. Fitopatol. bras 26: 689-702, 2001. Lin C. H., Lu C. T., Lin H. T. and Pan T. M. Safety assessment and detection method of genetically modified Chinese Kale (Brassica oleracea cv. alboglabra ). J Agric Food Chem 57: 1876-1881, 2009. Lindbo J. A., Silva-Rosales L., Proebsting W. M. and Dougherty W. G. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5: 1749-1759, 1993. Lines R., Persley D., Dale J., Drew R. and Bateson M. Genetically engineered immunity to Papaya ringspot virus in Australian papaya cultivars. Molecular Breeding 10: 119-129, 2002. MacKenzie S. A., Lamb I., Schmidt J., Deege L., Morrisey M. J., Harper M., Layton R. J., Prochaska L. M., Sanders C., Locke M., Mattsson J. L., Fuentes A. and Delaney B. Thirteen week feeding study with transgenic maize grain containing event DAS-O15O7-1 in Sprague-Dawley rats. Food Chem Toxicol 45: 551-562, 2007. Mangrauthia S. K., Singh Shakya V. P., Jain R. K. and Praveen S. Ambient temperature perception in papaya for papaya ringspot virus interaction. Virus Genes 38: 429-434, 2009. Manshardt R. M. ''UHRainbow'' papaya. In: University of Hawaii College of Tropical Agriculture and Human Resources Germplasmpp G1-2, 1998. Maron D. M. and Ames B. N. Revised methods for the Salmonella mutagenicity test. Mutat Res 113: 173-215, 1983. Mathesius C. A., Barnett J. F., Jr., Cressman R. F., Ding J., Carpenter C., Ladics G. S., Schmidt J., Layton R. J., Zhang J. X., Appenzeller L. M., Carlson G., Ballou S. and Delaney B. Safety assessment of a modified acetolactate synthase protein (GM-HRA) used as a selectable marker in genetically modified soybeans. Regul Toxicol Pharmacol 55: 309-320, 2009. Mazza R., Soave M., Morlacchini M., Piva G. and Marocco A. Assessing the transfer of genetically modified DNA from feed to animal tissues. Transgenic Res 14: 775-784, 2005. Mortelmans K. and Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455: 29-60, 2000. Mortelmans K. and Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutation Research 455: 29-60, 2000. Nemeth A., Wurz A., Artim L., Charlton S., Dana G., Clenn K., Hunst P., Jennings J., Shilito R. and Song P. Sensitive PCR analysis of animal tissue samples for fragments of endogenous and transgenic plant DNA. J Agric Food Chem 52: 6129-6135, 2004. Pa&eacute;z A. Manejo delvirus de la mancha anular de la papaya en la region Caribe colombiana. CPRPOICA, Bolet&iacute;n T&eacute;cnico No 8. Vaelledupar, Colombia, 14 pp, 2003. Padgette S. R., Taylor N. B., Nida D. L., Bailey M. R., MacDonald J., Holden L. R. and Fuchs R. L. The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. J Nutr 126: 702-716, 1996. Poulsen M. and Knudsen I. Comparative safety testing of genetically modified foods in a 90-day rat feeding study design allowing the distinction between primary and secondary effects of the new genetic event. Regul Toxicol Pharmacol 49: 53-62, 2007. Powell-Abel P., Nelson R. S., De B., Hoffmann N., Rogers S. G. and Fraley R. T. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738-743, 1986. Purcifull D. E., Edwardson J. R., Hiebert E. and Gonsalves D. Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses 84, 1984. Ran T., Mei L., Lei W., Aihua L., Ru H. and Jie S. Detection of transgenic DNA in tilapias (Oreochromis niloticus, GIFT strain) fed genetically modified soybeans (Roundup Ready). Aquaculture Research 40: 1350-1357, 2009. Ratcliff F. G., MacFarlane S. A. and Baulcombe D. C. Gene silencing without DNA. rna-mediated cross-protection between viruses. Plant Cell 11: 1207-1216, 1999. Roberfroid M. Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr 33: 103-148, 1993. Robles W., Pantoja A., Abreu E., Pe&ntilde;a J., Ortiz J., Lugo M., Cort&eacute;s M. and Macchiavelli R. El efecto de pr&aacute;cticas agron&oacute;micas sobre el nivel poblacional de &aacute;fidos y virosis en Carica papaya L. Manejo Integrado de Plagas y Agroecologia (Costa Rica) 77: 38-43, 2006. Rodr&iacute;guez R. Formulaci&oacute;n de un programa de buenas pr&aacute;ticas agr&iacute;colas (BPA’s) en el cultovo de papaya en El Salvador. Thesis, Instituto de Fitosanidad. Montecillo, Texcoco, Mexico. Monograph, 63 pp, 2004. Ruanjan P., Kertbundit S. and Juricek M. Post-transcriptional gene silencing is involved in resistance of transgenic papayas to Papaya ringspot virus. Biologia Plantarum 51: 517-520, 2007. Russell W. M. S. and Burch R. L. The sources, incidence, and removal of inhumanity. The principles of humane experimental technique. London239 pp, 1959. Sanford J. C. and Johnston S. A. The concept of parasite derived resistance. J Theor Biol 113: 395-405, 1985. Seralini G. E., Cellier D. and de Vendomois J. S. New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch Environ Contam Toxicol 52: 596-602, 2007. Sharma R., Damgaard D., Alexander T. W., Dugan M. E., Aalhus J. L., Stanford K. and McAllister T. A. Detection of transgenic and endogenous plant DNA in digesta and tissues of sheep and pigs fed Roundup Ready canola meal. J Agric Food Chem 54: 1699-1709, 2006. Sheen T. F., Wang H. L. and Wang D. N. Control of Papaya ringspot virus by cross protection and cultivation techniques. Journal of the Japanese Society for Horticultural Science 67: 1232-1235, 1998. Souza Junior M. T., Nickel O. and Gonsalves D. Development of virus resistant transgenic papayas expressing the coat protein gene from a Brazilian isolate of Papaya ringspot virus. Fitopatolgia Brasileira 30: 357-365, 2005. Tecson Mendoza E. M., Laurena A. C. and Botella J. R. Recent advances in the development of transgenic papaya technology. Biotechnol Annu Rev 14: 1387-2656, 2008. Tennant P., Ahmad M. H. and Gonsalves D. Field resistance of coat protein transgenic papaya to Papaya ringspot virus in Jamaica. Plant Dis 89: 841-847, 2005. Tennant P., Ahmad M. H. and Gonsalves D. Transformation of Carica papaya L. with virus coat protein genes for studies on resistance to Papaya ringspot virus from Jamaica. Tropical Agriculture (Trinidad) 79: 105-113, 2002. Tennant P., Fermin G., Fitch M. M., Manshardt R. M., Slightom J. L. and Gonsalves D. Papaya ringspot virus resistance of transgenic rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. European Journal of Plant Pathology 107: 645-653, 2001. Tennant P., Gonsalves C., Ling K., Fitch M., Manshardt R., Slightom J. and Gonsalves D. Differential protection against Papaya ringspot virus isolates in coat protein transgenic papaya and classically cross-protected papaya. Phytopathology 84: 1359-1366, 1994. Tennant P. F., Fermin G. A. and Roye M. E. Viruses infecting papaya (Carica papaya L.): Etiology, pathogenesis, and molecular biology. Plant Viruses 1: 178-188, 2007. Tice R. R., Erexson G. L., Hilliard C. J., Huston J. L., Boehm R. M., Gulati D. and Shelby M. D. Effect of treatment protocol and sample time on the frequencies of micronucleated polychromatic erythrocytes in mouse bone marrow and peripheral blood. Mutagenesis 5: 313-321, 1990. Torous D. K., Dertinger S. D., Hall N. E. and Tometsko C. R. Enumeration of micronucleated reticulocytes in rat peripheral blood: a flow cytometric study. Mutat Res 465: 91-99, 2000. Tripathi S., Bau H. J., Chen L. F. and Yeh S. D. The ability of Papaya ringspot virus strains overcoming the transgenic resistance of papaya conferred by the coat protein gene is not correlated with higher degrees of sequence divergence from transgene. European Journal of Plant Pathology 110: 871-882, 2004. Tripathi S., Suzuki J. Y., Ferreira S. A. and Gonsalves D. Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol Plant Pathol 9: 269-280, 2008. Tudisco R., Mastellone V., Cutrignelli M. I., Lombardi P., Bovera F., Mirabella N., Piccolo G., Calabro S., Avallone L. and Infascelli F. Fate of transgenic DNA and evaluation of metabolic effects in goats fed genetically modified soybean and in their offsprings. Animal 4: 1662-1671, 2010. USEPA. In vitro mammalian chromosome aberration test. In: Health Effects Test Guidelines, OPPTS Harmonized Test Guidelines, Series 870.5375, EPA 5712-C-5398-5223, p. 5371-5313, 1998. USFDA. Guidance for Industry. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers 2005. Vanparys P., Deknudt G., Vermeiren F., Sysmans M. and Marsboom R. Sampling times in micronucleus testing. Mutat Res 282: 191-196, 1992. Vegas A., Cermeli M. and Trujillo G. Afidos relacionados con el virus de la mancha anillada de la lechosa en Venezuela. Presencia, transmision y eficiencia. Agronomia Tropical 35: 25-31, 1985. Wang H. L., Wang C. C., Chiu R. J. and Sun M. H. Preliminary study on papaya ringspot virus in Taiwan. Plant Prot. Bull. 20: 133-140, 1978. Waterhouse P. M., Graham M. W. and Wang M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95: 13959-13964, 1998. Xu W., Li L., Lu J., Luo Y., Shang Y. and Huang K. Analysis of caecal microbiota in rats fed with genetically modified rice by real-time quantitative PCR. J Food Sci 76: M88-93, 2011. Yeh S. D. and Gonsalves D. Evaluation of induced mutants of Papaya ringspot virus for control by cross protection. Phytopathology 74: 1086-1091, 1984. Yeh S. D. and Gonsalves D. Practices and perspective pf control pf papaya ringspot virus by cross protection. Adv. Dis. Vector Res. 10: 237-257, 1994.
摘要: 
基因改造生物(Genetically modified organism, GMO)為一種使用基因工程或分子生物技術,將遺傳物質轉移(或轉殖)入活細胞或生物體,使該生物表現此基因所調控的功能性狀(行政院衛生署, 2010)。基因改造食品(GMF)為基因改造生物製造出的食品。葉錫東教授等人成功進行基因改造抗木瓜輪點病毒木瓜以提高木瓜生產量,但其食用性仍頗受爭議。因此,本實驗針對基改抗木瓜輪點病毒18-2-4與非基改之單抗親本台農二號之親本木瓜日昇品種回交後(2210)及非基改之單抗親本台農二號之親本木瓜泰國株回交後(823)及回交後2210與823雜交F1果實(823-2210)等三種果實探討國產基因改造木瓜使用安全性。新鮮木瓜先經冷凍乾燥濃縮為10:1,實驗分兩階段進行,第一階段為分子鑑定,利用PCR確認基改木瓜回交果實中是否含有840 bp及151 bp基改片段,並進行生醫活性消退分析試驗,以電泳法探討此基改片段在胃液、腸液及膽鹽中的變化,再進一步偵測連續餵食7天大鼠之組織臟器中是否存有此基改片段。結果顯示,木瓜冷凍乾燥粉含有840 bp及151 bp基改片段,與胃液共同培養15分鐘後此基改片段便消失,但與腸液及膽鹽共同培養120分鐘後仍可偵測到。另於餵食大鼠組織臟器中並未測到840 bp及151 bp基改片段,推測基改片段可能無法通過胃液。第二階段為安全性評估,進行三種基改木瓜回交果實冷凍乾燥粉對沙門氏菌(Salmonella typhimurium)五種菌株回復突變致變異之Ames試驗、對小鼠(ICR品系)週邊血液微核試驗及活體外哺乳類細胞染色體變異試驗,並與非基改之台農二號進行比較。結果顯示,基改木瓜回交果實對沙門氏菌無致變異性、對小鼠週邊紅血球均不具活體染色體基因變異之毒性作用且對活體外哺乳類細胞株CHO-K1之染色體不具致變異作用。另外,亦進行大鼠口服急毒性及28天重覆餵食毒性等毒理試驗。結果顯示,大鼠口服急毒性及28天餵食毒性試驗中,無論是基改或是非基改之雄鼠組別肝臟相對重量較空白對照組低,且28天餵食毒性試驗中非基改及基改之組別其飼料消耗量大多較空白對照組有顯著降低,其他如血液學、血清生化學、尿液學、肉眼及組織病理學檢查結果均無明顯毒性作用。綜合以上結果,國產基因改造木瓜回交果實品種2210、823及823-2210不論是活體外或是活體內試驗皆不具有致變異作用及致毒性反應,顯示此三種基因改造木瓜回交果實與非基因改造木瓜台農二號之安全性實質等同。

Genetically modified organisms (GMO) are organisms whose genetic material has been altered using genetic engineering techniques (DOH, 2010). Genetically modified food (GMF) is made by genetically modified organism. A genetically modified papaya was newly developed by Prof. Yeh SD that can be a valuable strategy to resistant PRSV infection and to increase papaya production, but it's a major challenge for food safety assessment. This study was performed to evaluate the food safety of the newly development of backcross genetically modified papaya fruits in Taiwan. The backcross fruits, including mono-resistant transgenic papaya lines (18-2-4) protected against Papaya ringspot virus backcrossed with the non-GM control line of Sunrise (code no. 2210), or non-GM control line of Thailand (code no. 823) and the other one was hybrid with 2210 and 823 (code no. 823-2210). The fresh papaya fruits were frozen and dried that concentrate rate was 10%. The study was designed in two parts, molecular identification and safety evaluation. At first, for molecular identification, three approaches were confirmed with the genetically modified gene fragment (coat protein gene- 840 bp and 151 bp). In bioinformatic analysis of SGF, SIF and bile salts, the genetically modified gene fragment 840 bp and 151 bp were was rapidly (<15 mins) hydrolyzed in SGF by electrophoresis analysis, but the genetically modified gene fragment were still observed more than 120 mins when incubated with SIF and bile salts. Then, rats were treated with non-GM and backcross GM papaya fruits for 7 days, the genetically modified gene fragment 840 bp were not detectable in all organs, indicating that exogenous gene fragment was degraded by gastric fluid in the alimentary canal and may not be taken up into organs. Furthermore, for the genotoxicity of backcross GM papaya fruits, three assays were conducted including Ames test, micronucleus test in mice and chromosomal aberration in CHO-K1 cells. Results revealed that non-GM and backcrossed GM papaya fruits were negative in genotoxicity. Also, for the animal toxicity, both acute oral toxicity (5 g/kg bw) and 28 days feeding toxicity trials (2 g/kg bw) were performed, results revealed that there were no difference of backcross GM papaya fruits when compared with the blank control and the non-GM control line of Tainung No. 2 group in the parameters of weight changes, hematology, biochemistry, urinalysis, gross and histopathological examinations in rats. All these parameters presented here supporting that the backcross GM papaya fruits as an equivalence and safe substitute for traditional papaya in food.
URI: http://hdl.handle.net/11455/15396
其他識別: U0005-2807201118362900
Appears in Collections:獸醫病理生物學所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.