Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15402
標題: 考慮接觸效應之海底埋管有限元素分析
Finite Element Method for Seabed-Pipeline with Contact Force Effect
作者: 黃冠綸
Huang, Guan-Lun
關鍵字: Seabed-Pipeline;埋管;Finite Element Method;Contact Force;有限元素;接觸
出版社: 土木工程學系所
引用: 參 考 文 獻 1.Clukey, E. C., Vermersch, J. A., Koch, S. P. and Lamb, W. C., 1989, “Natural densification by wave action and sand surrounding a buried offshore pipeline”, Proceedings 21st Annual Offshore Technology Conference, Houston, Texas, pp.291-300. 2.Barends, F. B. J. and Siperenburg, S. E. F., 1991, ”Interaction between Ocean Waves and Sea-Bed”, Geo-Coastal’91, Yokohama, Japan, Vol. 2, pp.1091-1108. 3.Rahman, M. S., 1997, “Instability and movement of oceanfloor sediments : A review”, International Journal of Offshore and Polar Engineering, Vol. 7, No. 3, pp. 220-225. 4.Zen, K., D. S. Jeng, Hsu, J. R. C. and Ohyama, K., 1998, “Wave-induced seabed instability : Difference between liquefaction and shear failure, “ Soils and Foundations, Vol. 38 No. 2, pp. 37-47. 5.Yamamoto, T., Trevorrow, M. V., Badiey, M. and Trurgut, A., 1989, ”Determination of the seabed porosity and shear modulus profiles using a gravity wave inversion”, Geophysical Journal Internationl, Vol. 98, No. 1, pp. 173-182. 6.Nye, T. and Yamamoto, T., 1994, ”Field test of buried ocean-wave direction spectrometer system”, Journal of Waterway, Port, Coastal and Ocean Engineering, A.S.C.E, Vol. 120, No. 5, pp. 451-466. 7.Yamamoto, T. and Turgut, A, 1988, ”Acoustic wave propagation through porous media with arbitrary por size distributions, ”Journal of Acoustical Society of America, Vol. 83, No.5, pp. 1744-1751. 8.Putnam, J. A., 1949, ”Loss of wave energy due to percolation in a permeable sea bottom,” Trans. Am. Geophys. Union, Vol. 30, pp. 407-419. 9.Moshagen, H. and Tourm, A 1975. ”Wave induced pressures in permeable seabed.” Journal of Waterways, Harbors and Coastal Engineering Division, ASCE.,101(1):49-57. 10.Yamamoto, T., Koning, H. L., ”Sellmejjer H. and Hijum, E. V., 1978, ”On the response of a poro-elastic bed to water waves,” Journal of Fluid Mechanics, Vol.87, pp. 193-206. 11.Biot, M. A., 1941, ”General theory of three-dimensional consolidation,” Journal of Applied Physics, 12, 155-164. 12.Magda, W., 1996, ”Wave-induce uplift force acting on a submarine buried pipeline: finite element formulation and verification of computations,” Computers and Geotechics, Vol. 19, No. 1, pp. 47-73. 13.Jeng, D. S. and Lin, Y. S., 1996, ”Finite element model for water wave-soil interaction,” Soil Dynamics and Earthquake Engineering, Vol. 15, pp. 283-300. 14.Lin, Y. S. and Jeng, D. S., 1996, ”Response of Poro-elastic seabed to 3-d wave system: a finite element analysis,” Coastal Engineering in Japan, Vol. 39, No. 2, pp. 195-182. 15.Jeng, D. S. and Lin., Y. S., 1997, ”Non-linear wave-induced response of porous seabed: a finite element analysis,” International Journal for numerical and analytical Methods in Geomechanics, Vol. 21, pp. 15-42. 16.Lin, Y. S. and Jeng, D. S., 1997, ”The effects of variable permeability on the wave-induced seabed response,” Ocean Engineering Vol. 24, No. 7, pp. 623-643. 17.S. H . Ju.J . J Stone and Rowlands,1993”A New Symmetric Contact Element Stiffness Matrix For Frictional Contact Problems,” Computer & Structure Vol.54.No.2.pp.289-301. 18.H. Mase, T.Sakai and M. Sakamoto,1994,”Wave-Induced Porewater Pressures and Effective Stresses around Breakwater,”Ocean Engng,Vol.21.No.4.pp.361-379. 19.張淇銘,1999,”波浪作用下土壤內埋管之有限元素分析模式”,碩士論文,國立中興大學土木工程研究所。 20.蔡坤峰,2002,”波浪-海底床-埋管交互作用機制之探討:三維有限元素分析模式”,碩士論文,國立中興大學土木工程研究所。 21.黃繼賢,2004,”慣性力對海浪與海底土壤交互作用影響之有限元素模式”,碩士論文,國立中興大學土木工程研究所。 22.黃吉廷,2005,”慣性力對波浪-海底床-埋管交互作用機制之有限元素模式”,碩士論文,國立中興大學土木工程研究所。
摘要: 
本研究的目的在建立波浪作用下土壤內埋管之二維有限元素分析模式,模式主要利用Biot’s壓密理論、彈性力學之力平衡方程式及彈性下應力應變線性關係式,再利用Galerkin法建立有限元素分析模式,模式中並考慮埋管和土壤之間接觸力,以分析埋管和土壤之各種應力。

本文中將討論土壤和埋管之間有無接觸力之影響時,造成土壤
和埋管間各種不同的應力分佈之差異性,並且考慮在不同深度和不同週期時,土壤和埋管之間各種不同應力分佈會造成之變化。經由本文中所建立之模式及分析結果,希望可供工程界在進行海洋埋管設計時做為參考。

The objective of this study is developed a two-dimensional finite element model for wave-seabed-pipeline interaction with inertia force effect. The formulation is based on Biot's consolidation theory and equilibrium equations. The finite element model is established by using Galerkin's method. In the method, the indirect static force caused by the pipes and the soil are considered in order to analyzing effects of the different distribution of static forces between pipes and the soil.


This study discusses the different distribution of the stresses caused by the effect of the soil and the pipes when they make contact with each other. Moreover, when the soil and pipes make contact at different depths and different frequencies, what are the changes will they produce. By using the experiments mentioned in this thesis we hope that it could be for reference of the construction when pipes are buried in the sea.
URI: http://hdl.handle.net/11455/15402
其他識別: U0005-2501200712013100
Appears in Collections:土木工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.