Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15435
標題: 應用PIV及BIV於垂直式消能池週期性振盪流場之速度量測
Velocity Measurements of Periodic Oscillatory Flow over Vertical Drop energy-dissipator Using PIV and BIV
作者: 郭鎧兆
Kuo, Kai-Joe
關鍵字: Periodic Oscillatory Flow;週期性振盪流場
出版社: 土木工程學系所
引用: 1. Rockwell, D. and Naudascher, E.: “Review of self-sustaining oscillation of flow past cavity”, Trans. of ASME, Journal of Fluids Engineering, Vol. 100, pp. 152-165, 1978. 2. Naudascher, E.:“On identification and preliminary assessment of Sources of Flow-Induced Vibrations”, Practical Experiences with Flow-induced Vibrations, C21, pp. 520-522, 1979. 3. Srinivasan, S.:“Numerical simulation of turbulence three dimensional cavity flows”, Ph. D Dissertation, Old Dominnion University, Norfolk, Virginia, 1988. 4. Moore, W. L.:“Energy loss at the base of free overfall”, Transations, ASCE, Vol. 108, pp. 1343-1360, 1943. 5. Rand, W.:“Flow geometry at straight drop spillways”, Proceedings of the American Society of Civil Engineers, Vol. 81, No. 791, Sept., pp. 1-13, 1955. 6. 孫洪福:「單階自由跌水流場特性之實驗探討」,國立中興大學土木工程研究所碩士論文,1998。 7. 林呈、謝世圳、莊仁合:「垂直式跌水工靜水池內週期性振盪流特性之實驗探討」,中國土木水利工程學刊,2002。 8. 邱泳仁:「垂直式單階跌水工與跌水消能池之流場特性探討」,國立中興大學土木工程研究所碩士論文,2001。 9. 楊勝嘉:「垂直式消能池之尾檻尺寸對振盪流場之頻率特性研究探討」,國立中興大學土木工程研究所碩士論文,2002。 10. 張勝淵:「垂直式消能池振盪流場之特性研究及應用PIV的可行性探討」,國立中興大學土木工程研究所碩士論文,2002。 11. Yonguk, R.,Cheng,K.A.,Ho-Joon, L:“Bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater” Measurement Science and Technology , Vol. 16, pp. 1945-1953 , 2005 12. White, M. P.:“Discussion of Moore”, Transactions, ASCE, Vol. 108, pp. 1361-1364, 1943. 13. Rouse, H.:“Discharge characteristics of the free overfall”, Civil Engineering, Vol. 6, No. 4, 1936. 14. Gill, M. A.:“Hydraulics of rectangular vertical drop structures”, Journal of Hydraulic Research,Vol. 17, No. 4, pp. 289-302, 1979. 15. Chanson, H.:“Hydraulics of napped flow regime above stepped chutes and spillways”, Australian Civil Engineering Transactions, I.E. Aust., Vol. CE36, No. 1, pp. 69-76, 1994. 16. Rajaratnam, N. and Chamani, M. R.:“Energy loss at drops”, Journal of Hydraulic Research, Vol. 33, No. 3, pp. 373-384, 1995. 17. Vischer, D. L., and Hager, W. H.:“Energy dissipator”, Netherlands: A. A. Balkema Book Co. pp. 90-92, 1995. 18. Chanson, H.: Discussion of Rajaratnam, N. and Chamani M.R. (1995), Journal of Hydraulic Research, Vol. 34, No. 2, pp. 273-278, 1996. 19. Lin, C., Suen, H. F., and Yen, G. H.:“On the flow characteristics of free overfalls”, Proceedings of the 7th International Symposium on Flow Modeling and Turbulence Measurement, pp. 55-66, 1998. 20. Lin, C., Hsieh, S. C., Kuo, K. J., and Chang, K. A.,:“Observation of oscillation characteristics in periodic oscillation flow over vertical drop energy-dissipator”, 12th international symposium on flow visualization, 2006. 21. 蔡建文:「消能設施對投潭水作用下壓力變化之研究」,國立中興大學土木工程研究所碩士論文,1993。 22. 周憲德、黃貴麟:「階梯式舌流之消能特性」,第八屆水利研討會論文集,第1187-1194頁,1996。 23. 梁文壇:「跌水迴流區之水理分析」,國立中央大學土木工程研究所碩士論文,1998。 24. 黃文彥:「單階自由跌水之速度場量測與分析」,國立中興大學土木工程研究所碩士論文,1999。 25. 林呈、黃文彥、顏光輝:「自由跌水之舌流區內速度場的量測探討」,第十一屆水利工程研討會論文集,台北,第J35~ J43頁,1999。 26. 莊仁合:「自由跌水消能池中週期性振盪流場之特性探討」,國立中興大學土木工程研究所碩士論文,2000。 27. 林呈:「台灣河流之沖刷對橋梁基礎與道路邊坡之影響及因應對策研究」,交通部公路局專案研究計畫(第一分年)成果報告,台北,第348 ~ 359頁,2001。
摘要: 
在二維之波浪水槽中,進行週期性振盪流速度場之測量實驗時,發現當水舌流於沖擊底床後會捲增許多的氣泡。由於利用雷射切光易被氣泡所散射,導致傳統的質點影像測速儀(PIV)技術,無法量測此高濃度的氣泡流場。本文採用一個改良PIV的方法—氣泡影像測速儀(BIV),藉由互相有關係泡沫影像作為"質點",直接以氣泡作為追蹤者測量氣泡速度,且不需雷射切光,僅須要將視野深度的誤差減到最小。故在沒有或少數氣泡的區域中,可以使用質點影像測速儀測量流場速度,但在氣泡濃度較高的區域中,則使用氣泡影像測速儀量測。
為更進一步瞭解週期性振盪流場之運動機制,本研究以模型實驗方式,在單一模型尺寸(h/H = 0.43、Yc/L = 0.70、Fr = 2.86、流場第一調和主頻fo = 0.513 Hz)條件下的垂直式消能池中,首度嘗試以高速攝影機配合鋁粉顆粒追蹤法之質點影像儀技術,與高速攝影機配合陰影成相之氣泡影像儀測速技術,分別對週期性振盪流場之非夾氣區與夾氣區進行速度場量測。並將上述兩套系統搭配水位計同步量測,利用水位計量測之水位時序列變化以小波轉換法進行瞬時速度場相位分析。經由對應之週期性振盪相位序列,將夾氣區與非夾氣區之速度場加以重組,完整且精確的呈現出週期性振盪流場之速度分佈。

The measurement of velocity fields of periodic oscillatory flow over a two-dimensional vertical drop energy-dissipator was investigated experimentally. Since a large amount of air bubbles are entrained in the oscillation flow. The highly aerated bubbles caused the traditional particle image velocimetry (PIV) technique to fail due to the uncontrollable scattering of laser light. A modified PIV method, called bubble image velocimetry (BIV), was employed by directly using bubbles as the tracer and measuring the bubble velocity by correlating the “texture” of the bubble images. No laser light sheet was needed while the depth of field was limited to minimize the error. While the fluid velocity in the region where no or few bubbles can be successfully obtained using PIV, the velocity in the high void fraction region can be measured using BIV.
To further investigate the velocity characteristics of the periodic oscillatory flow over a two-dimensional vertical drop, PIV and BIV were used in the non-aerated region and the aerated region for quantitative velocity measurement, respectively. The oscillation of water surface was measured using a wave gauge for reference signal. The oscillation phases of particle image velocimetry (PIV) and bubble image velocimetry (BIV) were analyzed using wavelet analysis method. Through combining velocity fields of the non-aerated region and aerated region in the same phase, the cyliclic velocity fields of the oscillatory flow could be presented in detail.
URI: http://hdl.handle.net/11455/15435
其他識別: U0005-2908200620302700
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.