Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorCheng, Syu-Jheen_US
dc.identifier.citationAndo H, Funasaka Y, Oka M, Ohashi A, Furumura M, Matsunaga J, Matsunaga N, Hearing VJ, Ichihashi M. Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis. J Lipid Res 40(7): 1312-1316, 1999. Ando H, Wen ZM, Kim HY, Valencia JC, Costin GE, Watabe H, Yasumoto K, Niki Y, Kondoh H, Ichihashi M, Hearing VJ. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem J 394(Pt 1): 43-50, 2006. Andrawis A, Kahn V. Effect of methimazole on the activity of mushroom tyrosinase. Biochem J 235(1): 91-96, 1986. Boissy RE, Visscher M, DeLong MA. DeoxyArbutin: a novel reversible tyrosinase inhibitor with effective in vivo skin lightening potency. Exp Dermatol 14(8): 601-608, 2005. Bolognia JL and Orlow SJ. Biology of melanocyte, In: Dermatology, Bolognia JL, Jorizzo J, and Rapini R, eds. Harcourt, London, ch65, 43-54, 2003. Botchkarev VA, Paus R. Molecular biology of hair morphogenesis: development and cycling. J Exp Zoolog B Mol Dev Evol 298(1): 164-180, 2003. Botchkareva NV, Khlgatian M, Longley BJ, Botchkarev VA, Gilchrest BA. SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J 15(3): 645-658, 2001. Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res 16(2): 101-110, 2003. Brown T, Zirvi M, Cotsarelis G, Gelfand JM. Vitiligo-like hypopigmentation associated with imiquimod treatment of genital warts. J Am Acad Dermatol 52(4): 715-716, 2005. Burdock GA, Soni MG, Carabin IG. Evaluation of health aspects of kojic acid in food. Regul Toxicol Pharmacol 33(1): 80-101, 2001. Cario-Andre M, Bessou S, Gontier E, Maresca V, Picardo M, Taieb A. The reconstructed epidermis with melanocytes: a new tool to study pigmentation and photoprotection. Cell Mol Biol 45(7): 931-942, 1999. Carlson JA, Grabowski R, Mu XC, Del Rosario A, Malfetano J, Slominski A. Possible mechanisms of hypopigmentation in lichen sclerosus. Am J Dermatopathol 24(2): 97-107, 2002. Carroll JM, Crompton T, Seery JP, Watt FM. Transgenic mice expressing IFN-gamma in the epidermis have eczema, hair hypopigmentation, and hair loss. J Invest Dermatol 108(4): 412-422, 1997. Carsberg, CJ, Warenius, HM, Friedmann, PS. Ultraviolet radiation-induced melanogenesis in human melanocytes. Effects of modulating protein kinase C. J Cell Sci 107: 2591-2597, 1994. Casoli V, Cario-Andre M, Costet P, Pain C, Taieb A. Comparison of long-term survival of pigmented epidermal reconstructs cultured in vitro vs. xenografted on nude mice. Pigment Cell Res 17(1): 87-92, 2004. Chakraborty AK, Funasaka Y, Komoto M, Ichihashi M. Effect of arbutin on melanogenic proteins in human melanocytes. Pigment Cell Res 11(4): 206-212, 1998. Christofidou-Solomidou M, Longley BJ, Whitaker-Menezes D, Albelda SM, Murphy GF. Human skin/SCID mouse chimeras as an in vivo model for human cutaneous mast cell hyperplasia. J Invest Dermatol 109(1): 102-107, 1997. De Luca C, Picardo M, Breathnach A, Passi S. Lipoperoxidase activity of Pityrosporum: characterisation of by-products and possible role in pityriasis versicolor. Exp Dermatol 5(1): 49-56, 1996. El Ghalbzouri A, Jonkman MF, Dijkman R, Ponec M. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Invest Dermatol 124(1): 79-86, 2005. Elleder M, Borovansky J. Autofluorescence of melanins induced by ultraviolet radiation and near ultraviolet light. A histochemical and biochemical study. Histochem J 33(5): 273-81, 2001. Espin JC, Wichers HJ. Effect of captopril on mushroom tyrosinase activity in vitro. Biochim Biophys Acta 1544(1-2): 289-300, 2001. Fleming CJ, Bryden AM, Evans A, Dawe RS, Ibbotson SH. A pilot study of treatment of lentigo maligna with 5% imiquimod cream. Br J Dermatol 151(2): 485-488, 2004. Fuller BB, Drake MA, Spaulding DT, Chaudhry F. Downregulation of tyrosinase activity in human melanocyte cell cultures by yohimbine. J Invest Dermatol 114(2): 268-276, 2001. Halaban R, Cheng E, Svedine S, Aron R, Hebert DN. Proper folding and endoplasmic reticulum to golgi transport of tyrosinase are induced by its substrates, DOPA and tyrosine. J Biol Chem 276(15): 11933-11938, 2001. Hasan S, Dinh K, Lombardo F, Dawkins F, Kark J. Hypopigmentation in an African patient treated with imatinib mesylate: a case report. J Natl Med Assoc 95(8): 722-724, 2003. Hearing VJ. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J Dermatol Sci 37(1): 3-14, 2005. Hirobe T. Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res 18(1): 2-12, 2005. Hirobe T, Takeuchi S, Hotta E. The melanocortin receptor-1 gene but not the proopiomelanocortin gene is expressed in melanoblasts and contributes their differentiation in the mouse skin. Pigment Cell Res 17(6): 627-635, 2004. Imokawa G, Yada Y, Morisaki N, Kimura M. Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes. Biochem J 330 ( Pt 3): 1235-1239, 1998. Ito Y, Kanamaru A, Tada A. Centaureidin promotes dendrite retraction of melanocytes by activating Rho. Biochim Biophys Acta 1760(3): 487-494, 2006. Jappe U, Geier J, Hausen BM. Contact vitiligo following a strong patch test reaction to triglycidyl-p-aminophenol in an aircraft industry worker: case report and review of the literature. Contact Dermatitis 53(2): 89-92, 2005. Jimenez-Cervantes C, Martinez-Esparza M, Perez C, Daum N, Solano F, Garcia-Borron JC. Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor. J Cell Sci 114(Pt 12): 2335-2344, 2001. Jung GD, Yang JY, Song ES, Par JW. Stimulation of melanogenesis by glycyrrhizin in B16 melanoma cells. Exp Mol Med 33(3): 131-135, 2001. Kameyama K, Sakai C, Kondoh S, Yonemoto K, Nishiyama S, Tagawa M, Murata T, Ohnuma T, Quigley J, Dorsky A, Bucks D, Blanock K. Inhibitory effect of magnesium L-ascorbyl-2-phosphate (VC-PMG) on melanogenesis in vitro and in vivo. J Am Acad Dermatol 34(1): 29-33, 1996. Kasraee B. Depigmentation of brown Guinea pig skin by topical application of methimazole. J Invest Dermatol 118(1): 205-207, 2002. Kasraee B, Tran C, Sorg O, Saurat JH. The depigmenting effect of RALGA in C57BL/6 mice. Dermatology 210 Suppl 1: 30-34, 2005. Kim DH, Hwang JS, Baek HS, Kim KJ, Lee BG, Chang I, Kang HH, Lee OS. Development of 5-[(3-aminopropyl)phosphinooxy]-2-(hydroxymethyl)-4H-pyran-4- one as a novel whitening agent. Chem Pharm Bull 51(2): 113-116, 2003. Kim DS, Park SH, Park KC. Transforming growth factor-beta1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. Int J Biochem Cell Biol 36(8): 1482-1491, 2004. Kim YJ, No JK, Lee JH, Chung HY. 4,4''-Dihydroxybiphenyl as a new potent tyrosinase inhibitor. Biol Pharm Bull 28(2): 323-327, 2005. Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 62(15): 1707-1723, 2005. Kroll TM, Bommiasamy H, Boissy RE, Hernandez C, Nickoloff BJ, Mestril R, Caroline Le Poole I. 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 124(4): 798-806, 2005. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19(2): 155-157, 1998. Kuo PC, Damu AG, Cherng CY, Jeng JF, Teng CM, Lee EJ, Wu TS. Isolation of a natural antioxidant, dehydrozingerone from Zingiber officinale and synthesis of its analogues for recognition of effective antioxidant and antityrosinase agents. Arch Pharm Res 28(5): 518-528, 2005. Lassalle MW, Igarashi S, Sasaki M, Wakamatsu K, Ito S, Horikoshi T. Effects of melanogenesis-inducing nitric oxide and histamine on the production of eumelanin and pheomelanin in cultured human melanocytes. Pigment Cell Res 16(1): 81-84, 2003. Lee KT, Lee KS, Jeong JH, Jo BK, Heo MY, Kim HP. Inhibitory effects of Ramulus mori extracts on melanogenesis. J Cosmet Sci 54(2): 133-142, 2003. Lee YS, Park JH, Kim MH, Seo SH, Kim HJ. Synthesis of tyrosinase inhibitory kojic acid derivative. Arch Pharm 339(3): 111-114, 2006. Legros L, Cassuto JP, Ortonne JP. Imatinib mesilate (Glivec): a systemic depigmenting agent for extensive vitiligo? Br J Dermatol 153(3): 691-692, 2005. Lin CB, Babiarz L, Liebel F, Roydon Price E, Kizoulis M, Gendimenico GJ, Fisher DE, Seiberg M. Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation. J Invest Dermatol 119(6): 1330-1340, 2002. Luiten RM, Kueter EW, Mooi W, Gallee MP, Rankin EM, Gerritsen WR, Clift SM, Nooijen WJ, Weder P, van de Kasteele WF, Sein J, van den Berk PC, Nieweg OE, Berns AM, Spits H, de Gast GC. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol 23(35): 8978-8991, 2005. Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, Passi S, Grammatico P, Picardo M. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 109(3): 310-313, 1997. Martinez-Esparza M, Jimenez-Cervantes C, Solano F, Lozano JA, Garcia-Borron JC. Mechanisms of melanogenesis inhibition by tumor necrosis factor-alpha in B16/F10 mouse melanoma cells. Eur J Biochem 255(1): 139-146, 1998. Martinez-Esparza M, Solano F, Garcia-Borron JC. Independent regulation of tyrosinase by the hypopigmenting cytokines TGF beta1 and TNF alpha and the melanogenic hormone alpha-MSH in B16 mouse melanocytes. Cell Mol Biol (Noisy-le-grand) 45(7): 991-1000, 1999. Mastore M, Kohler L, Nappi AJ. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. FEBS J 272(10): 2407-2415, 2005. Menter JM, Etemadi AA, Chapman W, Hollins TD, Willis I. In vivo depigmentation by hydroxybenzene derivatives. Melanoma Res 3(6): 443-449, 1993. Minwalla L, Zhao Y, Cornelius J, Babcock GF, Wickett RR, Le Poole IC, Boissy RE. Inhibition of melanosome transfer from melanocytes to keratinocytes by lectins and neoglycoproteins in an in vitro model system. Pigment Cell Res 14(3): 185-194, 2001. Moon KY, Ahn KS, Lee J, Kim YS. Kojic acid, a potential inhibitor of NF-kappaB activation in transfectant human HaCaT and SCC-13 cells. Arch Pharm Res 24(4): 307-311, 2001. Moss KG, Toner GC, Cherrington JM, Mendel DB, Laird AD. Hair depigmentation is a biological readout for pharmacological inhibition of KIT in mice and humans. J Pharmacol Exp Ther 307(2): 476-480, 2003. Mun YJ, Lee SW, Jeong HW, Lee KG, Kim JH, Woo WH. Inhibitory effect of miconazole on melanogenesis. Biol Pharm Bull 27(6): 806-809, 2004. Muller-Rover S, Handjiski B, van der Veen C, Eichmuller S, Foitzik K, McKay IA, Stenn KS, Paus R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117(1): 3-15, 2001. Nakagawa M, Kawai K, Kawai K. Contact allergy to kojic acid in skin care products. Contact Dermatitis 32(1): 9-13, 1995. Nakamura K, Yoshida M, Uchiwa H, Kawa Y, Mizoguchi M. Down-regulation of melanin synthesis by a biphenyl derivative and its mechanism. Pigment Cell Res 16(5): 494-500, 2003. Nordlund JJ, Grimes PE, Ortonne JP. The safety of hydroquinone. J Eur Acad Dermatol Venereol 20(7): 781-787, 2006. Ohguchi K, Akao Y, Nozawa Y. Stimulation of melanogenesis by the citrus flavonoid naringenin in mouse B16 melanoma cells. Biosci Biotechnol Biochem 70(6): 1499-501, 2006. Ortonne JP, Passeron T. Melanin pigmentary disorders: treatment update. Dermatol Clin 23(2): 209-226, 2005. Park SH, Kim DS, Kim WG, Ryoo IJ, Lee DH, Huh CH, Youn SW, Yoo ID, Park KC. Terrein: a new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci 61(22): 2878-2885, 2004. Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, Bae H. Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 20(11): 921-934, 2006. Patrick E, Juberg DR, O''Donoghue J, Maibach HI. Depigmentation with tert-butyl hydroquinone using black guinea pigs. Food Chem Toxicol 37(2-3): 169-175, 1999. Paus R, Muller-Rover S, Van Der Veen C, Maurer M, Eichmuller S, Ling G, Hofmann U, Foitzik K, Mecklenburg L, Handjiski B. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol 113(4): 523-532, 1999. Peters EM, Maurer M, Botchkarev VA, Jensen K, Welker P, Scott GA, Paus R. Kit is expressed by epithelial cells in vivo. J Invest Dermatol 121(5): 976-984, 2003. Peters EM, Tobin DJ, Botchkareva N, Maurer M, Paus R. Migration of melanoblasts into the developing murine hair follicle is accompanied by transient c-Kit expression. J Histochem Cytochem 50(6): 751-766, 2002. Raanani P, Goldman JM, Ben-Bassat I. Challenges in oncology. Case 3. Depigmentation in a chronic myeloid leukemia patient treated with STI-571. J Clin Oncol 20(3): 869-870, 2002. Rees JL. The melanocortin 1 receptor (MC1R): more than just red hair. Pigment Cell Res 13(3): 135-140, 2000. Sasaki S, Hozumi Y, Kondo S. Influence of prostaglandin F2alpha and its analogues on hair regrowth and follicular melanogenesis in a murine model. Exp Dermatol 14(5): 323-328, 2005. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, Shapiro SS. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res 254(1): 25-32, 2000. Sharma A, Vora A, Bhutani M. Generalized hypopigmentation due to imatinib: a fairness boon? Indian J Dermatol Venereol Leprol 71(1): 45-46, 2005. Sharov AA, Li GZ, Palkina TN, Sharova TY, Gilchrest BA, Botchkarev VA. Fas and c-kit are involved in the control of hair follicle melanocyte apoptosis and migration in chemotherapy-induced hair loss. J Invest Dermatol 20(1): 27-35, 2003. Slominski A, Paus R, Bomirski A. Hypothesis: possible role for the melatonin receptor in vitiligo: discussion paper. J R Soc Med 82(9): 539-41, 1989. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84(4): 1155-1228, 2004. Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res 19(6): 550-571, 2006. Sugimoto K, Nishimura T, Nomura K, Sugimoto K, Kuriki T. Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase. Chem Pharm Bull 51(7): 798-801, 2003. Takizawa T, Mitsumori K, Tamura T, Nasu M, Ueda M, Imai T, Hirose M. Hepatocellular tumor induction in heterozygous p53-deficient CBA mice by a 26-week dietary administration of kojic acid. Toxicol Sci 73(2): 287-293, 2003. Thoma W, Kramer HJ, Mayser P. Pityriasis versicolor alba. J Eur Acad Dermatol Venereol 19(2): 147-152, 2005. Tran C, Kasraee B, Grand D, Carraux P, Didierjean L, Sorg O, Saurat JH. Pharmacology of RALGA, a mixture of retinaldehyde and glycolic acid. Dermatology 210 Suppl 1: 6-13, 2005. Tsao H, Millman P, Linette GP, Hodi FS, Sober AJ, Goldberg MA, Haluska FG. Hypopigmentation associated with an adenovirus-mediated gp100/MART-1- transduced dendritic cell vaccine for metastatic melanoma. Arch Dermatol 138(6): 799-802, 2002. Wu CY, Pang JH, Huang ST. Inhibition of Melanogenesis in Murine B16/F10 Melanoma Cells by Ligusticum sinensis Oliv. Am J Chin Med 34(3): 523-533, 2006. Yamakoshi J, Otsuka F, Sano A, Tokutake S, Saito M, Kikuchi M, Kubota Y. Lightening effect on ultraviolet-induced pigmentation of guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds. Pigment Cell Res 16(6): 629-638, 2003. Yamamura T, Onishi J, Nishiyama T. Antimelanogenic activity of hydrocoumarins in cultured normal human melanocytes by stimulating intracellular glutathione synthesis. Arch Dermatol Res 294(8): 349-354, 2002. Yang JY, Koo JH, Song YG, Kwon KB, Lee JH, Sohn HS, Park BH, Jhee EC, Park JW. Stimulation of melanogenesis by scoparone in B16 melanoma cells. Acta Pharmacol Sin 27(11): 1467-1473, 2006. Yeager AM, Shinn C, Farmer ER, Wingard JR, Yeager MJ. Growth retardation and depigmentation of hair after high-dose busulfan and congenic hematopoietic cell transplantation in mice. Bone Marrow Transplant 9(3): 199-204, 1992. Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, Kenyon K, Davis MM, Riddell SR, Greenberg PD. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 192(11): 1637-1644, 2000. Yoshida M, Takahashi Y, Inoue S. Histamine induces melanogenesis and morphologic changes by protein kinase A activation via H2 receptors in human normal melanocytes. J Invest Dermatol 114(2): 334-342, 2000. Young B, Heath JW. Wheather's Functional Histology : A Text and Colour Atlas. 4th edition, Part 3, ch9, 157-171, 2000. Yu J, Wang L, Walzem RL, Miller EG, Pike LM, Patil BS. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J Agric Food Chem 53(6): 2009-2014, 2005. Zhong S, Wu Y, Soo-Mi A, Zhao J, Wang K, Yang S, Jae-Ho Y, Zhu X. Depigmentation of melanocytes by the treatment of extracts from traditional chinese herbs: a cell culture assay. Biol Pharm Bull 29(9): 1947-1951, 2006.en_US
dc.description.abstractHydroquinone (HQ)為酚類化學藥物,為最早被發現之致白化藥物,廣泛應用於皮膚漂白,如黑斑(melasma)或美白產品,其相關衍生化合物 p-hydroxyanisole (MMEH)亦具有類似效果。研究黑色素生成(melanogensis)在色素代謝性疾病或美容相關領域,可針對具促進或抑制黑色素生成之物質或代謝路徑加以探討和研究。本實驗主要目的為研究去色素作用(depigmentation)之試驗模式探討,分別採用B16F10、A2058黑色素腫瘤細胞株與C57BL/6(B6)小鼠,進行比較去色素藥物之作用,以了解色素表現之差異性。在in vitro方面,以B16F10小鼠與A2058人類來源黑色素腫瘤細胞株,分別評估酚類化合物HQ與MMEH之致白化作用,並以酪胺酸酶之酵素活性(tyrosinase activity)及黑色素含量(melanin content)作為偵測指標,同時以 Kojic acid (KA)與Ascorbic acid (AA)兩種已知酪胺酸酶抑制藥物,作為陽性對照組並進行比較。結果顯示,HQ對於B16F10細胞Tyrosinase酵素活性在1mM抑制率約為27% (p <0.05), MMEH於10mM 抑制率可達30% (p<0.05),KA於1mM完全無抑制效果,但AA在1mM卻呈現增加現象 ; HQ對A2058細胞株於10mM抑制率約14%(p<0.05),AA於1mM抑制率近40%(p<0.05),MMEH與KA於10和1mM則無顯著差異,B16F10與A2058細胞對化學藥物去色素表現之差異,可能與細胞不而有所差異。Melanin含量方面,B16F10細胞株在HQ、MMEH與AA分別於1mM、10mM和1mM皆呈現抑制作用(p<0.05),KA於1mM則無任何改變 ; 然而以上四種化合物對A2058細胞株皆無顯著差異。在in vivo方面,以HQ與MMEH 0.5%每週施打於小鼠背部皮下,可造成毛髮去色素作用, 且於不同時間點之MMEH可誘發毛髮白化區域逐漸增加,以此方式進行兩種中草藥Lai-1及Lai-2抑制毛髮白化之評估,但結果並不如理想,推測可能與藥劑之作用機制不同有關。zh_TW
dc.description.abstractIn pigment disorders and cosmetology, there are many experiments in researching whether the compounds could induce hypopigmentation or hyperpigmentation and knowing the pathways of pigment formation. Hydroquinone(HQ) is the first discovered phenoic chemical to cause depigmentation, and has been applied to treat hyperpigmentation in skin, such as melasma. There are many analogues of HQ have the same effect, such as p-hydroxyanisole(MMEH). The aim of this study was to find out the possible effects of melanogenesis, by using B16F10, A2058 melanoma cell line and C57BL/6(B6) mice. In vitro, for the study of B16F10 and A2058 cells were incubated with HQ and MMEH for 72 hours to evaluate the effect of melanin content and tyrosinase activity. In addition, the well-known tyrosinase inhibitors of kojic acid(KA) and ascorbic acid(AA) were also tested as positive control. Results revealed the inhibition ratio of B16F10 cells on tyrosinase activity at concenstrations of 1mM HQ and 10mM MMEH in treatment was 27% and 30%. However, KA had no effect, but AA increased tyrosinase activity in B16F10 cells. In A2058 cells, the inhibition ratio of 10mM HQ was 14%, 1mM AA was 40%, but MMEH and KA had no effect on tyrosinase activity. In melanin content assay, HQ, MMEH and AA revealed dose-depend inhibiton in B16F10 cells, but not in KA. The A2058 cells had no effect to those of four test chemicals. It was suggested that the sensitivity of chemical-induced depigmentation might be related to the species difference. In vivo study, female B6 mice, 4-weeks old, were subcutaneously injected 0.5% HQ and MMEH to evaluate the potential depigmentation. Results revealed that the change of depigment area was significantly increased in a time-related. However, no inhibition effect of Lai-1 and Lai-2 herbal complexes was found under this depigmentation model in mice, and suggested that the action of these herbs might differ to the chemical-caused depigmentation.en_US
dc.description.tableofcontents中文摘要…………………………………………………………………I 英文摘要………………………………………………………………II 目錄……………………………………………………………………III 圖次……………………………………………………………………IV 表次……………………………………………………………………V 第一章前言 ……………………………………………………………1 第二章文獻探討…………………………………………………………2 第三章研究目的與實驗流程…………………………………………25 第四章材料與方法……………………………………………………27 第五章結果……………………………………………………………37 第六章討論……………………………………………………………71 參考文獻………………………………………………………………79zh_TW
dc.subjectChemical-Induced Depigmentationen_US
dc.subjectMelanoma Cellsen_US
dc.subjectC57BL/6 Miceen_US
dc.titleStudy of Chemical-Induced Depigmentation in Melanoma Cells and C57BL/6 Miceen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:獸醫病理生物學所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.