Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15494
標題: 探討超音波速度與混凝土抗壓強度之關係與其應用
Investigation of the Relationship between the Ultrasonic Pulse Velocity and Compressive Strength of Concrete and Its Application
作者: 郭世芳
Kuo, Shih-Fang
關鍵字: Ultrasonic Pulse Velocity;混凝土UPV;mixture proportion;compressive strength;混凝土配比;抗壓強度
出版社: 土木工程學系所
引用: 干裕成 (2003) “劣化混凝土材料應力波傳速度與E值、老化時程及抗壓強度之關係”行政院原子能委員會委託研究計畫研究報告,2003年12月。 沈得縣、黃兆龍 (1991) “高爐熟料與飛灰對新拌水泥漿體水化機理影響之研究”,中國土木水利工程學刊,第三卷,第四期, pp. 333-338。 沈進發 (1983)“混凝土品質控制”,第三版,pp. 7-351983年9月。 林炳炎 (1993)“飛灰與飛灰混凝土”,現代營建,1993年7月 邱欽賢 (2002)“水工結構混凝土之抗沖蝕性”,國立中興大學土木工程學系碩士論文,2002年6月。 苗伯霖 (1996)“高性能混凝土配比施工及品檢應注意問題”,高性能混凝土研討會論文集,pp.1-34,台北,1996年4月。 島川正憲 著,賴迪陽 譯 (1982)“超音波工學理論實務”,復漢出版社,1982年。 陳建旭 (1986)“大理石之微觀結構對工程性質之影響”,碩士論文,國立中興大學土木研究所,台中,1986年。 黃兆龍 (1997)“混凝土性質與行為”,詹氏書局,1997年8月。 黃兆龍,蘇南 (1990)“台灣中北部主要河川粗骨材巨觀工程性質之研究”,土木水利,第十七卷,第一期,pp. 43-59,1990。 黃啟貞 (1980)“超音波檢測試驗法”,中華民國非破壞檢測協會(上冊),1980年。 楊仲家、黃然、葉為忠 (1996)“以微觀力學探討粗骨材對高性能混凝土之影響”,第三屆結構工程研討會,pp.1785-1793,1996。 劉玉雯 (2006)“應用於水工結構表層之高性能混凝土磨損行為”,國立中興大學土木工程學系博士論文,2006年1月。 劉賢淋、洪如江 (1984)“風化作用對岩石材料強度性質影響之研究”,碩士論文,國立台灣大學土木工程研究所,台北,1984年。 賴朝鵬 (1999)“混凝土材料組成對其流動性質與波傳行為之影響”,國立中興大學土木工程學系博士論文,1999年6月。 ACI Committee 228 Report (1996). In-Place Methods to Estimate Concrete Strength, ACI Standard ACI 228.1R-95, 1996. Aïtcin, Pierre-Claude and Neville, Adam (1993).“High-Performance Concrete Demystified”, Concrete International, Vol.15, No.1, January 1993, pp.21-26. Andersen Johannes and Nerenst Poul (1952). Wave Velocity in Concrete, ACI Journal, Proc. Vol.48, Apr. 1952, pp. 613-636. Anderson David, A. and Seals Roger, K. (1981).“Pulse Velocity as a Predictor of 28- and 90-Day Strength”, ACI Materials Journal, Vol.78, No.2, March-April 1981, pp.116-122. ASTM C 1074 (1992). "Standard Practice for Estimating Concrete Strength by the Maturity Method," Annual Book of ASTM Standards, Vol. 04.02., 1992 ASTM C 1150 (1992). "Standard Test Method for the Break-Off Number of Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992 ASTM C 42 (1992). "Standard Method of Obtaining and Testing Drilled Cores and Sawed Beams of Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992 ASTM C 597 (1992). "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992 ASTM C 803 (1992). "Standard Test Method for Penetration Resistance of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992 ASTM C 805 (1992). "Standard Test Method for Rebound Number of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992 ASTM C 873 (1992). "Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds," Annual Book of ASTM Standards, Vol. 04.02., 1992 ASTM C 900 (1992). "Standard Test Method for Pullout Strength of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1999 Berntsson eif, Chandra Satish, and Kutti Tomas (1990).“Principles and Factors Influencing High-Strength Concrete Production”, Concrete International, Vol.12, No.12, December 1990, pp.59-62. Berriman, J., Purnell, P., Hutchinsm D.A., Neild, A. (2005).〝Humidity and aggregate content correction factors for air-coupled ultrasonic evaluation of concrete,〞Ultrasonics 43, August, 2005, pp. 211–217. Brian, B. Hope and Paul, M. Hewitt (1985).“Progressive Concrete Mix Proportioning”, ACI Materials Journal, Vol82, No.3, May-June 1985, pp.350-356. BSI 1881-203 (1992).“Recommendations for the Assessment of Concrete Strength by Near-to-Surface Tests,” BS 1881, Part 207, British Standards Institution. Bungey, J.H. (1982). "Testing of Concrete in Structures," Surrey University Press, Glasgow, 1982, pp. 207 Chan, H.J., Yen, T., Lai, T.P. and Huang, Y.L. (1999).“Determination of dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement and Concrete Composites, Vol.21, No.1, 1999, pp.29-37. Charles, T. Kennedy (1940).“The Design of Concrete Mixes”, ACI Materials Journal, Vol36, 1940, pp.373-400. Chung, H. W. and Law, K.S. (1983).“Diagnosing in Situ Concrete by Ultrasonic Pulse Technique”, Concrete International, Vol.13, No.10,1983, pp.42-49. Dan, E.Branson (1978).”Deformation of Concrete Structure” , 1978, pp. 2 Galan Andrej (1967). “Estimate of Concrete Strength by Ultrasonic Pulse Velocity and Damping Constant,” ACI Journal, Vol. 64, No. 10, 1967, pp. 678-684. Jones, R. (1954).“Testing of Concrete by an Ultrasonic Pulse Technique”, RILEM Int. Symp. On Nondestructive Testing of Materials and Structures, Paris. Vol.1, Paper No.A-17, January 1954, pp.137, RILEM Bull. No.19, 2nd part, November 1954. Kaplan, M.F. (1958).“Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns”, Journal of ACI, Vol.54, No.8, February 1958, pp. 675-688. Kaplan, M.F. (1952).“Effects of Incomplete Consolidation on Compressive and Flexural Strength, Ultrasonic Pulse Velocity, and Dynamic Modulus of Elasticity of Concrete”, Journal of ACI, Vol.56, No.9, March, 1952, pp. 853-867. Kennedy, harles T. (1940).“The Design of Concrete Mixes”, ACI Materials Journal, Vol36, 1940, pp.373-400. Klieger Paul (1957). “Long-Time Study of Cement Performance in Concrete, Chapter 10-Progress Report on Strength and Elastic Properties of Concrete”, Journal of ACI, Vol.54, No.6, December, 1957, pp. 481-503. Knab, L.J., Blessing, G.V., and Clifton, J.R. (1983). "Laboratory Evaluation of Ultrasonics for Crack Detection in Concrete," ACI J., 80, 17, 1983. Koliasa, S., and Georgiou, C. (2005).“The effect of paste volume and of water content on the strength and water absorption of concrete, Cement & Concrete Composites 27, 2005, pp. 211–216. Komloš, K., Popovics, S., Nürnbergerová, T., Babál, B. and Popovics, J.S. (1996).〝Ultrasonic Pulse Velocity Test of Concrete Properties as Specified in Various Standards,〞Cement and Concrete Composites Volume: 18, June, 1996, pp. 357-364. Lai, Chao-Peng, Lin, Yiching, and Yen, Tsong (2001).“Behavior and Estimation of Ultrasonic Pulse Velocity in Concrete,” The International Conference on Structural Engineering ,Mechanics and Computation, Cape Town South Africa, 2001, pp. 1365-1372. Lama, R.D., and Vutukuri, V.S. (1978). Handbook on Mechanical Properties of Rocks, Trans Tech. Publications Clausthal, Germany, Vol.2 and Vol.4. (1978) Leif Berntsson, Satish Chandra, and Tomas Kutti (1990). “Principles and Factors Influencing High-Strength Concrete Production”, Concrete International, Vol.12, No.12, December 1990, pp.59-62. Lin, Y., Chang, fan H., and Hsiao, C. (1998).“Estimation of High-Performance Concrete Strength by Pulse Velocity,” Journal of the Chinese Institute of Engineers, Vol. 20, No. 6, 1998, pp. 661-668. Malhotra, V.M., /Editor et al. (1984).“In Situ/Nondestructive Testing of Concrete”, ACI SP-82, 1984 Malhotra, V.M. (1976).“Testing Hardened Concrete : Nondestructive Methods,” ACI Monograph, No. 9, American Concrete Institute/Iowa State University Press, Detroit, 1976, pp. 204. Mehta Kumar (1986a).“CONCRETE Structure, Properties, and Materials”, Prentice–hall, INC., Englewood Cliffs, New Jersey, USA ,1986. Mehta, P. K. (1986b).“CONCRETE Structure, Properties, and Materials”, Prentice–hall, INC., Englewood Cliffs, New Jersey, USA ,1986. Meyer, A. (1963). Uber den Einfluss des Wasserzementwertes auf die Fruhfestigkeit von Beton (On the Effect of the Water-Cement Ratio on the Early strength of Concrete), Betonstein Zeitung, Vol.29,No.8, Aug. 1963, PP. 391-394 Mindess, S., and Young, J. F. (1981).“concrete”, Prentic-Hall, Inc., Englewood Cliffs, New Jersey,1981, pp24-25. Műller-Rochholz, J. (1979). Determination of the Elastic Properties of Lightweight Aggregate by Ultrasonic Pulse Velocity”, The International Journal of Lightweight Concrete, Vol.1, No.2, 1979, pp.87-90. Naik, T.R., and Malhotra, V.M. (1991).“The Ultrasonic Pulse Velocity Method”, Chapter 7 in CRC Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. carino, Eds., CRC Press, Boca raton, FL,1991, pp.169-188. Naik, T.R. (1979).“The Ultrasonic Testing of Concrete”, Published by ACI in Experimental Methods in Concrete Structure for Practitioners, G.M. Sabnis and N. Fitzsimons, Eds, October 1979. Ohdaira Etsuzo, Masuzawa Nobuyoshi (2000).〝Water content and its effect on ultrasound propagation in concrete —the possibility of NDE,〞Ultrasonics 38, 2000, pp. 546–552. Pessiki Stephen and Johnson, Matthew R. (1996).“Nondestructive Evaluation of Early-age Concrete Strength In Plate Structures by the Impact-Echo Method,” ACI Materials Journal, Vol. 93, No.3, 1996, pp.260-271. Pessiki, P. S., and Carino, N.J. (1988).“Setting Time and Strength of Concrete Using the Impact-Echo Method”, ACI Materials Journal, 1988; Vol.85, No.5, pp.389-399. Philleo, R. E. (1955).“Comparison of Results of Three Methods for Determining Young’s Modulus of Elasticity of Concrete”, Journal of ACI, Vol.51, No.5, January 1955,pp.461-469. Popovics, S. (1976).“Strength and Related Properties of Concrete:A Quantative Approach”, JOHN WILEY & SONS, INC., USA ,1976, pp. 62-71. Popovics, S. (1987).“A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock, SEM-RILEM International Conference, June 1987,Houston Texas, pp.170-174. Popovics, S. (1990a). ”Analysis of Concrete Strength versus water-cement ratio relationshop”ACI Materials Journal,Sep.-Oct.1990,PP.517-529. Popovics, S., Rose, L. Joseph, and Popovics, John S. (1990b).“The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Reaserch, Vol. 20, No.2, 1990, pp.259-270. Price, W.F. and Hynes, J.P. (1996).“In-Situ Strength Testing of High Strength Concrete”, Magazine of Concrete Reseach, Vol.48, No.176, Sept. 1996,pp.189-197. Price, W.H. (1951). Journal of the ACI,Vol.47,No.6,1951,PP.417-432 RILEM Recommendations NDT 1 (1972). "Testing of Concrete by the Ultrasonic Pulse Method," Paris, 1972, December. Sansalone, Mary J., and Streett, William B. (1997a).“Impact-Echo: Nondestructive Evaluation of Concrete and Masonry”, BULLBRIER Press, ITHACA, N.Y., 1997a, pp29-74 Sansalone, Mary J., and Streett, William B. (1997b).“Impact-Echo: Nondestructive Evaluation of Concrete and Masonry”, BULLBRIER Press, ITHACA, N.Y., 1997, 339 pages. Sellect Scott, F., Landis Eric, N., Peterson Michael, L. , Shah Surendra, P. and Achenbach Jan, D. (1998).“Ultrasonic Investigation of Concrete with Distributed Damage”, ACI Materials Journal, Vol.95, No.1, January-February 1998, pp.27-36. Sturrup, V.R., Vecchio, F.J., and Caratin, H. (1984).“Pulse Velocity as a Measure of Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227 Suaris Wimal and Fernando Viraj (1987).“Ultrasonic Pulse Attenuation as a Measure of Damage Growth during Cyclic Loading of Concrete”, ACI Materials Journal, May-June 1987, Vol.84, pp.185-193. Tanigawa, Y., Baba, K., and Mori, H. (1984).“Estimation of Concrete Strength by Combined Nondestructive Testing Method”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 57-76. Wu, T.T., and Lin, T. F. (1998).“The Stress Effect on the Ultrasonic Velocity Variation of Concrete under Repeated Loading”, ACI Materials Journal, Vol.95, No.5, September-October 1998, pp.519-524. Yang, C.C. and Huang, R. (1996).“ A Two-Phase Model for Predicting the Compressive Strength of Concrete”, Cement and Concrete Research, Vol.26, No.10, 1996, pp.1567-1577.
摘要: 
本文之目的在於廣泛探討混凝土之UPV(Ultrasonic Pulse Velocity)與強度間之關係,期能提出新的分析法則,以增進了解混凝土之配比與材齡如何影響UPV與強度間之關係。首先選用之混凝土配比為CP含量為36%,W/C由0.3變化到0.7,S/A有30、45及60%三種,製作混凝土圓柱試體,分別在齡期(age)為1、3、7、14及28天時對圓柱試體進行UPV量測及抗壓強度試驗,用以建立混凝土UPV與強度之關係。
實驗結果顯示,面乾內飽和混凝土UPV與強度之關係主要受齡期及CA含量兩個因素所主導。混凝土之UPV與強度隨齡期之增加而成長,但是UPV之成長速度明顯比強度來得快,二者成長速度之差異將隨混凝土配比(主要影響因子是W/C)不同而改變,故若同時考慮齡期與配比為變數時,則UPV與強度之關係性將非常複雜,因此本研究選擇硬固後之混凝土(age=28days)作為分析對象。本研究發現對特定之粗骨材含量時,可建立出一條明確且變異相當小之曲線來描述硬固混凝土之UPV與強度間之關係走勢,根據此一成果,本研究建議出適用於不同粗骨材含量之硬固混凝土UPV與強度關係曲線,為驗證此等關係曲線之適用性,將原用來建立關係曲線之45顆試體(28天齡期)及另外改變配比內粗骨材含量與水泥糊體含量製作156顆試體,再依混凝土配比之粗骨材含量選擇適當之模擬曲線來預測混凝土強度,評估結果201筆資料之預測強度與實測強度之誤差幾乎都在±10%以內。
另外,本論文探討細骨材細度模數、粗骨材表面潔淨程度、粗骨材種類及混凝土試體含水量之改變對硬固混凝土UPV與強度關係性之影響。研究結果顯示細骨材細度模數及粗骨材表面潔淨程度對硬固混凝土UPV與強度之間關係無明顯之影響。使用不同粗骨材種類(兩種不同波速之粗骨材)對於混凝土強度無明顯影響,但對UPV則有影響,兩種混凝土呈現出在橫軸(UPV軸)左右平移的趨勢。圓柱試體(Φ10×20 cm)含水量試驗結果顯示含水量的改變確實對UPV有所影響,相對於試體面乾內飽和狀態,在烘乾狀態下之UPV折減達7.5%,而於自然曝曬狀態可達4.5%,且隨著水灰比的降低此折減百分比亦隨之降低。

The purpose of this dissertation is to investigate the relationship between the ultrasonic pulse velocity (UPV) and the compressive strength of concrete. First, the specimens used in the studies were made of concrete with a paste content of 36% and the constituents of the specimens varied in different water/cement ratios and coarse aggregate contents by weight. Fifteen concrete mixtures were considered and fifteen specimens were constructed for each concrete mixture. 225 (15*15=225) cylindrical specimens were cast and cured in water at 23°C. These specimens were tested at 1, 3, 7, 14 and 28 days. The experimental data were used to establish the relationship between the ultrasonic pulse velocity (UPV) and the compressive strength of concrete.
The experimental results show that the relationship between UPV and the compressive strength of saturated surface-dry (SSD) concrete is significantly influenced by age and coarse aggregate content (CAC). The UPV and the compressive strength of concrete grow with age, but the growth rate varies with mixture proportion. To simplify the analysis task, this study chose hardened concrete (at an age of 28days) as the subject for analysis. It is found that with the same content of coarse aggregate, a clear relationship curve can be drawn to describe the UPV and compressive strength of hardened concrete. This study proposes the UPV and strength relationship curves for concrete having different contents of coarse aggregate. To verify the proposed curves, a verification program was carried out. In this program, additional concrete cylindrical specimens were prepared with change in concrete mixture proportions that include the amount of coarse aggregate (1170, 1040, 910, 780 kg/m3), paste volumes (30%、32%、33%、40%) and water-cement ratios (0.7, 0.6, 0.5 and 0.4). These curves were verified to be suitable for prediction of hardened concrete strength with a measured UPV value and the estimate values just have a relative error within ±10% compared to the actual strength of the cylinders.
In addition, the research also investigates the influence of the fine modulus (FM) of fine aggregate, the surface cleanness of coarse aggregate, the kind of coarse aggregate and the water content of concrete on the correlation between the UPV and the compressive strength of concrete. The experimental results show that the FM of fine aggregate, and surface condition of coarse aggregate have no obvious influence on the relationship between UPV and compressive strength of concrete. However, when the mixture proportions of concrete are the same, the higher UPV the coarse aggregate is, the higher UPV the concrete is. The change of water content of concrete cylinder truly has a significant influence on the UPV of concrete. According to the UPV of the SSD condition concrete cylinders, the UPV reduction can reach 7.5% under oven-dry condition, and reach 4.5% under room-dry condition. It is also found that the UPV reduction decreases with decreasing the water-cement ratio of concrete.
URI: http://hdl.handle.net/11455/15494
其他識別: U0005-0608200715283800
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.