Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15532
標題: 特有生物研究保育中心收容鳥類沙門氏菌流行病學及藥物敏感性研究
Study of the Epidemiology and Antimicrobial Susceptibility of Salmonella in Shelter Birds in Endemic Species Research Institute
作者: 黃怡軒
Huang, Yi-Hsuan
關鍵字: 沙門氏菌;Salmonella;野生鳥類;特有生物研究保育中心;脈衝式電泳;藥物敏感性;wild bird;PFGE;antimicrobial sensitivity;Endemic Species Research Institute
出版社: 獸醫病理生物學研究所
引用: 林茂勇、賴敏銓。2006。三、家禽副傷寒。林茂勇、宋華聰。禽病診治。第二版。藝軒出版社。134-137。 行政院衛生署疾病管制局。2006。傳染病標準檢驗方法手冊。台北。台灣。2-79至2-86。 李淵百。2005。台灣土雞的育種改良與產業趨勢。農業生技產業季刊。行政院農委會。台北。台灣。5-11。 蔡文城,何梅純。1996。GFB-14E電腦密碼細菌鑑定系統-輔助腸桿菌科、弧菌科及其它不常見革蘭氏陰性桿菌菌種之鑑定。九州圖畫文物有限公司。台北。台灣。27-40。 林正忠、劉正義、陳德勛。2008。台灣上市期豬、雞沙氏桿菌之分離率、血清型分佈及抗藥性研究。國立中興大學獸醫學系。博士論文。台中。台灣。 李裕銘、葉光勝、陳悅生、陳德勛。2005。影響豬屠體品質之微生物調查分析。國立中興大學獸醫公共衛生學研究所。碩士論文。台中。台灣。 行政院農業委員會特有生物研究保育中心。2012。南投縣。台灣。線上檢索日期:2012年6月25日。 http://tesri.tesri.gov.tw/show_index.php 野生動物急救站。2012。南投縣。台灣。線上檢索日期:2012年6月25日。 http://wfas.tesri.gov.tw:8000/index.php Grimont, P.A.D., Grimont, F., Bouvet, P., 2000. Taxonomy of the genus Salmonella. In: Wray, C., Wray, A. (Eds.), Salmonella in domestic animals. CABI Publishing, Oxon, UK, pp. 1-17. Jones, Y.E., McLaren, I.M., Wray, C., 2000. Laboratory aspects of Salmonella. In: Wray, C., Wray, A. (Eds.), Salmonella in domestic animals. CABI Publishing, Oxon, UK, pp. 393-405. MacFaddin, J.F., 1985. Media for isolation, cultivation, identification and maintenance of medical bacteria, Vol. 1. Williams & Wilkins, Baltimore, MD, pp. 966. Minor, L.L., 1988. Facultatively anaerobic gram-negative rods. In: Holt. J. G., Bergey’s manual of systemic bacteriology 1st ed. William and Wilkinsm, Baltomore, USA. pp. 427-458. Parry, C.M., 2006. Epidemiological and clinical aspects of human typhoid fever. In: Matroeni, P., Maskell, D. (Eds.), Salmonella infections: clinical, immunological and molecular aspects. Cambridge University Press, New York, USA, pp. 1-18. Rycroft, A.N., 2000. Structure, function and synthesis of surface polysaccharides in Salmonella. In: Wray, C., Wray, A. (Eds.), Salmonella in domestic animals. CABI Publishing, Oxon, UK, pp. 19-33. Sanchez, S., 2006. Making PCR a normal routine of the food microbiology lab. In: Maurer, J. (Ed.), PCR methods in foods 1st ed. Springer, New York, USA, pp. 51-68. Scherer, C.A., Miller, S.I., 2001. Molecular pathogenesis of Salmonellae. In: Groisman, E.A. (Ed.), principles of bacterial pathogenesis. Academic Press, USA, pp. 265-316. Waltman, W.D., Horne, A.M., and Pirkle, C., 1995. Comparative analysis of media and methods for isolating Salmonella from poultry and environmental samples. In: proceedings of symposium on the diagnosis of Salmonella Infections. United Sates Animal Health Association and American Association of Laboratory Veterinary Diagnosticians, Reno, Nevada, pp. 1-14. Akiba, M., Kusumoto, M., Iwata, T., 2011. Rapid identification of Salmonella enterica serovars, Typhimurium, Choleraesuis, Infantis, Hadar, Enteritidis, Dublin and Gallinarum, by multiplex PCR. J Microbiol Methods 85, 9-15. Allgayer, M.C., Lima-Rosa, C.A.V., Weimer, T.A., Rodenbusch, C.R., Pereira, R.A., Streck, A.F., Oliveira, S.D., Canal, C.W., 2008. Molecular diagnosis of Salmonella species in captive psittacine birds. Vet Rec 162, 816-819. Awad-Alla ME, A.H., Dessouki A.A., 2011. Prevalence of bacteria and parasites in White Ibis in Egypt. Vet Ital 46, 277-286. Bastin, D.A., Reeves, P.R., 1995. Sequence and analysis of the O antigen gene (rfb) cluster of Escherichia coli O111. Gene 164, 17-23. Bogomolni, A.L., Gast, R.J., Ellis, J.C., Dennett, M., Pugliares, K.R., Lentell, B.J., Moore, M.J., 2008. Victims or vectors: a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic. Dis Aquat Organ 81, 13-38. Bonifield, H.R., Hughes, K.T., 2003. Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J Bacteriol 185, 3567-3574. Brenner, F.W., Villar, R.G., Angulo, F.J., Tauxe, R., Swaminathan, B., 2000. Salmonella nomenclature. J Clin Microbiol 38, 2465-2467. Brooks, J.T., Matyas, B.T., Fontana, J., Degroot, M.A., Beuchat, L.R., Hoekstra, M., Friedman, C.R., 2012. An outbreak of Salmonella serotype Typhimurium infections with an unusually long incubation period. Foodborne Pathog Dis 9, 245-248. Butron, O., Brightsmith, D.J., 2010. Testing for Salmonella spp. in released parrots, wild parrots, and domestic fowl in lwoland Peru. J Wildl Dis 46, 718-723. Carter, M.E., Dwews, H.B., Griffiths, O.V., 1979. Salmonellosis in foals. J Feline Med Surg 3, 78-83. Chiou, C.S., Huang, J.F., Tsai, L.H., Hsu, K.M., Liao, C.S., Chang, H.L., 2006. A simple and low-cost paper-bridged method for Salmonella phase reversal. Diang Microbiol Infect Dis 54, 315-317. Cooper, G.L., 1994. Salmonellosis-infections in man and chicken: pathogenesis and the development of live vaccines-a review. Vet Bull 64, 123-143. Corry, J.E.L., Kitchell, A.G., Roberts, T.A., 1969. Interactions in Recovery of Salmonella-Typhimurium Damaged by Heat or Gamma Radiation. J Appl Microbiol 32, 415-428. Crosa, J.H., Brenner, D.J., Ewing, W.H., Falkow, S., 1973. Molecular relationships among the Salmonelleae. J Bacteriol 115, 307-315. Cunningham, A.A., 1996. Disease risks of wildlife translocations. Conserv Biol 10, 349-353. Curd, H., Lui, D., Reeves, P.R., 1998. Relationships among the O-antigen gene clusters of Salmonella enteric group B, D1, D2, and D3. J Bacteriol 180, 1002-1007. Dauga, C., Zabrovskaia, A., Grimont, P.A.D., 1998. Restriction fragment length polymorphism analysis of some flagellin genes of Salmonella enterica. J Clin Microbiol 36, 2835-2843. Doran, J.L., Collinson, S.K., Clouthier, S.C., Cebula, T.A., Koch, W.H., Burian, J., Banser, P.A., Todd, E.C.D., Kay, W.W., 1996. Diagnostic potential of sefA DNA probes to Salmonella Enteritidis and certain other O-serogroup D1 Salmonella serovars. Mol Cell Probes 10, 233-246. Echeita, M.A., Herrera, S., Garaiznar, J., Usera, M.A., 2002. Multiplex PCR-base detection and identification of the most common Salmonella second-phase flagellar antigens. Res Microbial 153, 107-113. Euzeby, J.P., 1999. Revised Salmonella nomenclature: designation of Salmonella enterica (ex Kauffmann and Edwards 1952) Le Minor and Popoff 1987 sp. nov., nom. rev. as the neotype species of the genus Salmonella Lignieres 1900 (approved lists 1980), rejection of the name Salmonella choleraesuis (Smith 1894) Weldin 1927 (approved lists 1980), and conservation of the name Salmonella typhi (Schroeter 1886) Warren and Scott 1930 (approved lists 1980). Request for an opinion. Int J Syst Bacteriol 49 Pt 2, 927-930. Foley, S.L., Lynne, A.M., 2008. Food animal-associated Salmonella challenges: pathogenicity and antimicrobial resistance. J Anim Sci 86, E173-187. Foti, M., Daidone, A., Aleo, A., Pizzimenti, A., Giacopello, C., Mammina, C., 2009. Salmonella bongori 48:z35:- in migratory birds, Italy. Emerg Infect Dis 15, 502-503. Gallardo, F., Ruiz, J., Marco, F., Towner, K.J., Vila, J., 1999. Increase in incidence of resistance to ampicillin, chloramphenicol and trimethoprim in clinical isolates of Salmonella serotype Typhimurium with investigation of molecular epidemiology and mechanisms of resistance. J Med Microbiol 48, 367-374. Gruenewald, R., Dixon, D.P., Brun, M., Yappow, S., Henderson, R., Douglas, J.E., Backer, M.H., 1990. Identification of Salmonella somatic and flagellar antigens by modified serological methods. Appl Environ Microbiol 56, 24-30. Haag-Wackernagel, D., Moch, H., 2004. Health hazards posed by feral pigenos. J Infect 48, 307-313. Havelaar, A.H., Haagsma, J.A., Mangen, M.J., Kemmeren, J.M., Verhoef, L.P., Vijgen, S.M., Wilson, M., Friesema, I.H., Kortbeek, L.M., van Duynhoven, Y.T., van Pelt, W., 2012. Disease burden of foodboren pathogens in the Netherlands, 2009. Int J Food Microbiol 156, 231-238. Herikstad, H., Motarjemi, Y., Tauxe, R.V., 2002. Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect 129, 1-8. Herrera-León, S., McQuiston, J.R., Usera, M.A., Fields, P.I., Garaizar, J., Echeita, M.A., 2004. Multiplex PCR for distinguishing the most common phase-1 flagellar antigens of Salmonella spp. J Clin Microbiol 42, 2581-2586. Herrera-León, S., Ramiro, R., Arroyo, M., Diez, R., Usera, M.A., Echeita, M.A., 2007. Blind comparison of traditional serotyping with three multiplex PCRs for the identification of Salmonella serotypes. Res Microbiol 158, 122-127. Hilbert, F., Smulders, F.J.M., Chopra-Dewasthaly, R., Paulsen, P., 2012. Salmonella in the wildlife-human interface. Food Res Int 45 603-608. Holt, P.S., 1993. Effect of induced molting on the susceptibility of white Leghorn hens to a Salmonella Enteritidis infection. Avian Dis 37, 412-417. Holt, P.S., Porter, R.E., Jr., 1992. Effect of induced molting on the course of infection and transmission of Salmonella Enteritidis in white Leghorn hens of different ages. Poult Sci 71, 1842-1848. Hong, Y., Liu, T., Lee, M.D., Hofacre, C.L., Maier, M., White, D.G., Ayers, S., Wang, L., Berghaus, R., Maurer, J.J., 2008. Rapid screening of Salmonella enterica serovars Enteritidis, Hadar, Heidelberg and Typhimurium using a serologically-correlative allelotyping PCR targeting the O and H antigen alleles. BMC Microbiol 8, 178. Islam, M., Morgan, J., Doyle, M.P., Phatak, S.C., Millner, P., Jiang, X., 2004. Persistence of Salmonella enterica serovar Typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathog Dis 1, 27-35. Johnson, J.M., Rajic, A., McMullen, L.M., 2005. Antimicrobial resistance of selected Salmonella isolates from food animals and food in Alberta. Can Vet J 46, 141-146. Joys, T.M., 1985. The covalent structure of the phase-1 flagellar filament protein of Salmonella Typhimurium and its comparison with other flagellins. J Biol Chem 260, 15758-15761. Kim, S., 2010. Salmonella serovars from foodborne and waterborne diseases in Korea, 1998-2007: total isolates decreasing versus rare serovars emerging. J Korean Med Sci 25, 1693-1699. Kitadai, N., Ninomiya, N., Murase, T., Obi, T., Takase, K., 2010. Salmonella isolated from the feces of migrating cranes at the Izumi Plain (2002-2008): serotype, antibiotic sensitivity and PFGE type. J Vet Med Sci 72, 939-942. Knox, R., Gell, P.H., Pollack, M.R., 1942. Selective media for organisms of the Salmonella group. J Pathol Bacteriol 54, 469-483. Kobayashi, H., Kanazaki, M., Shimizu, Y., Nakajima, H., Khatun, M.M., Hata, E., Kubo, M., 2007. Salmonella isolates from cloacal swabs and footpads of wild birds in the immediate environment of Tokyo Bay. J Vet Med Sci 69, 309-311. Kocabiyik, A.L., Cangul, I.T., Alasonyalilar, A., Dedicova, D., Karpiskova, R., 2006. Isolation of Salmonella Enteritidis phage type 21b from a Eurasian eagle-owl (Bubo bubo). J Wildl Dis 42, 696-698. Kudaka, J., Itokazu, K., Taira, K., Iwai, A., Kondo, M., Susa, T., Iwanaga, M., 2006. Characterization of Salmonella isolated in Okinawa, Japan. Jpn J Infect Dis 59, 15-19. Lin, C.C., Guo, J.W., Chang, C.C., Wang, Y.C., Shien, J.H., Yhe, K.S., Chen, T.H., 2008. Salmonella serovars isolated from marketing broilers, and simulated native chickens: prevalence and drug resistance. J Chin Soc Vet 34, 217-225. Lino, T., 1977. Genetics of structure and function of bacterial flagella. Annu Rev Genet 11, 161-182. Literák, I., Cízek, A., Smola, J., 1996. Survival of Salmonellas in a colony of common black-headed gulls Larus ridibundus between two nesting periods. Waterbirds 19, 268-269. Luk, J.M.C., Kongmuang, U., Reeves, P.R., Lindberg, A.A., 1993. Selective amplification of abequose and paratose synthase genes (rfb) by polymerase chain reaction for identification of Salmonella major serogroups (A, B, C2, and D). J Clin Microbiol 31, 2118-2123. Maurer, J.J., Schmidt, D., Petrosko, P., Sanchez, S., Bolton, L., Lee, M.D., 1999. Development of primers to O-antigen biosynthesis genes for specific detection of Escherichia coli O157 by PCR. Appl Enviro Microbiol 65, 2954-2960. Mallinoson, E.T., 1990. Salmonella monitoring system simplifies evaluation of farms. Poult Dig, 46-47. Marolda, C.L., Vicarioli, J., Valvano, M.A., 2004. Wzx proteins involved in biosynthesis of O antigen function in association with the first sugar of the O-specific lipopolysaccharide subunit. Microbiology 150, 4095-4105. Minette, H.P., 1984. Epidemiologic aspects of salmonellosis in reptiles, amphibians, mollusks and crustaceans-a review. Int J Zoonoses 11, 95-104. Molina-Lopez, R.A., Valverdύ, N., Martin, M., Mateu, E., Obon, E., Cerdà-Cuéllar, M., Darwich, L., 2011. Wild raptors as carriers of antimicrobial-resistant Salmonella and Campylobacter strains. Vet Rec 168, 565. Murchie, L., Whyte, P., Xia, B., Horrigan, S., Kelly, L., Madden, R.H., 2007. Prevalence of Salmonella in grade a whole shell eggs in the island of Ireland. J FoodProd 70, 1238-1240. Oliveira, S.D., Santos, L.R., Schuch, D.M.T., Silva, A.B., Salle, C.T.P., Canal, C.W., 2002. Detection and identification of salmonellas from poultry-related samples by PCR. Vet Microbiol 87, 25-35. Popoff, M.Y., Bockemuhl, J., McWhorter-Murlin, A., 1994. Supplement 1993 (no. 37) to the Kauffmann-White scheme. Res Microbiol 145, 711-716. Rahn, K., De Grandis, S.A., Clarke, R.C., McEwen, S.A., Galán, J.E., Ginocchio, C., Curtiss III, R., Gyles, C.L., 1992. Amplification of and invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6, 271-279. Ramos, R., Cerdà-Cuéllar, M., Ramírez, F., Jover, L., Ruiz, X., 2010. Influence of refuse sites on the prevalence of Campylobacter spp. and Salmonella serovars in seagulls. Appl Environ Microbiol 76, 3052-3056. Reche, M.P., Jimenez, P.A., Alvarez, F., Garcia de los Rios, J.E., Rojas, A.M., de Pedro, P., 2003. Incidence of Salmonellae in captive and wild free-living raptorial birds in central Spain. J Vet Med B Infect Dis Vet Public Health 50, 42-44. Reed, K.D., Meece, J.K., Henkel, J.S., Shukla, S.K., 2003. Birds, migration and emerging zoonoses: west nile virus, lyme disease, influenza A and enteropathogens. Clin Med Res 1, 5-12. Refsum, T., Handeland, K., Baggesen, D.L., Holstad, G., Kapperud, G., 2002. Salmonellae in avian wildlife in Norway from 1969 to 2000. Appl Environ Microbiol 68, 5595-5599. Reilly, W.J., Forbes, G.I., Paterson, G.M., Sharp, J.C., 1981. Human and animal salmonellosis in Scotland associated with environmental contamination, 1973-79. Vet Rec 108, 553-555. Safdar, A., Kaur, H., Elting, L., Rolston, K.V., 2004. Antimicrobial susceptibility of 128 Salmonella enterica serovar Typhi and Paratyphi A isolates from northern India. Chemotherapy 50, 88-91. Samuel, G., Reeves, P.R., 2003. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338, 2503-2519. Sareyyüpoğlu, B., Cantekin, Z., 2009. Use of a multiplex-polymerase chain reaction for detection of Salmonella and Chlamydophila psittaci from caged birds. Ankara Üniv Vet Fak Derg 56, 269-273. Sareyyüpoğlu, B., Çelik Ok, A., Cantekin, Z., Yardımı, H., Akan, M., Akçay, A., 2008. Polymerase chain reaction detection of Salmonella spp. in fecal samples of pet birds. Avian Dis 52, 163-167. Schwartz, D.C., Saffran, W., Welsh, J., Haas, R., Goldenberg, M., Cantor, C.R., 1983. New techniques for purifying large DNAs and studying their properties and packaging. Cold Spring Harb Symp Quant Biol 47 Pt 1, 189-195. Skov, M.N., Madsen, J.J., Rahbek, C., Lodal, J., Jespersen, J.B., Jorgensen, J.C., Dietz, H.H., Chriel, M., Baggesen, D.L., 2008. Transmission of Salmonella between wildlife and meat-production animals in Denmark. J Appl Microbiol 105, 1558-1568. Smith, N.H., Selander, R.K., 1991. Molecular genetic basis for complex flagellar antigen expression in a triphasic serovar of Salmonella. Proc Natl Acad Sci U S A 88, 956-960. Soument, C., Ermel, G., Rose, V., Drouin, P., Salvat, G., Colin, P., 1999. Evalutation of a multiplex PCR assay for simultaneous identification of Salmonella sp., Salmonella Enteritidis and Salmonella Typhimurium from environmental swabs of poultry houses. Lett Appl Microbiol 28, 113-117. Su, Y.C., Yu, C.Y., Lin, J.L., Lai, J.M., Chen, S.W., Tu, P.C., Chu, C., 2011. Emergence of Salmonella enterica serovar Potsdam as a major serovar in waterfowl hatcheries and chicken eggs. Avian Dis 55, 217-222. Tanaka, C., Miyazawa, T., Watarai, M., Ishiguro, N., 2005. Bacteriological survey of feces from feral pigeons in Japan. J Vet Med Sci 67, 951-953. Tizard, I., 2004. Salmonellosis in wild birds. J Exotic Pet Med 13, 55-66. Tsiodras, S., Kelesidis, T., Kelesidis, I., Bauchinger, U., Falagas, M.E., 2008. Human infections associated with wild birds. J Infect 56, 83-98. Zieg, J., Silverman, M., Hilmen, M., Simon, M., 1977. Recombinational switch for gene expression. Science 196, 170-172. Ziemer, C.J., Steadham, S.R., 2003. Evaluation of the specificity of Salmonella PCR primers using various intestinal bacterial species. Lett Appl Microbiol 37, 463-469. Andrews W.H., Jacobson, A., Hammack T., 2011, November. Bacteriological analytical manual. Chapter 5-Salmonella. Food and Drug Administration. USA. Retrieved June 25, 2012 from the World Wide Web: http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/ucm070149.htm#Id Centers for Disease Control and Prevention, 2010, May 4. Investigation update: Multistate outbreak of human Salmonella Montevideo infections. USA. Retrieved June 25, 2012 from the World Wide Web: http://www.cdc.gov/salmonella/montevideo/index.html Centers for Disease Control and Prevention, 2010, June 29. Investigation update: Multistate outbreak of human Salmonella Newport infections linked to raw alfalfa sprouts. USA. Retrieved June 25, 2012 from the World Wide Web: http://www.cdc.gov/salmonella/newport/index.html Porter, C., 2010, August 26. FDA confirms feed triggered Salmonella; wet weather also a factor. Retrieved June 25, 2012 from the World Wide Web: http://www.accuweather.com/en/weather-news/iowas-wet-summer-may-have-help/35787 PulseNet International. 2009, August. One-day (24-28 h) standardized laboratory protocol for molecular subtyping of Escherichia coli O157:H7, Salmonella serotypes, Shigella sonnei, and Shigella flexneri by pulse field gel electrophoresis (PFGE). Retrieved June 25, 2012 from the World Wide Web: http://www.pulsenetinternational.org/protocols/Pages/default.aspx World Health Organization. 2012. General information related to microbiological risks in food. Geneva, Switzerland. Retrieved June 25, 2012 from the World Wide Web: http://www.who.int/foodsafety/micro/general/en/ Grimmont, P.A.D., Weill F.X., 2007. WHO collaborating eentre for reference and research on Salmonella-antigenic formulae of the Salmonella serovars. 9th ed. Institut Pasteur, France. McWhorter-Murlin, A.C., Hickman-Brenner, F.W., 1994. Identification and serotyping of Salmonella and an update of the Kauffmann-White scheme; appendix A, Kauffmann-White scheme, alphabetical list of Salmonella serotypes (updated 1994); appendix B, Kauffmann-White scheme, list of Salmonella serotypes by O group (updated 1994). Foodborne and diarrheal diseases laboratory section, centers for disease control and prevention, Atlanta, Ga. Post, D.E., 1997. Food-borne pathogens monograph number I Salmonella. Oxoid limited, Hampshire, England.
摘要: 
沙門氏菌能感染野生鳥類,使野生鳥類生病及死亡,沙門氏菌甚至可能會由野生鳥類傳播給家畜及人類,造成公共衛生上的問題。此篇研究目的特別針對特有生物研究保育中心-野生動物急救站收容的野生鳥類,調查沙門氏菌盛行率、常見血清型與抗藥性的分佈情況,並利用統計學分析相關因子,及PFGE檢測野生鳥類與雞菌株之間的相關性。於2011年3月到2012年2月間,共收集237個鳥類泄殖腔或糞便拭子,依照ISO 6579:2002分離沙門氏菌,總體分離率為9.7% (23/237),分離出的沙門氏菌再進行藥物敏感性試驗與血清型分析,血清型結果為13株S. Albany、3株S. Newport、2株S. Montevideo、1株S. Weltevreden、1株S. Schwarzengrund與3株無法分型的沙門氏菌。藥物敏感性結果顯示,抗藥性較為嚴重的為ampicillin、chloramphenicol、florfenicol、trimethoprim-sulphamethoxazole、nalidixic acid,多重抗藥性菌株佔70.83%。初次採樣為陽性的鳥類,2週之後再採樣進行沙門氏菌檢測,仍有9隻被檢測出沙門氏菌陽性。將降雨量、月均溫與降雨天數、食性及年齡進行相關性分析,僅有降雨量有顯著相關性 (p<0.05)。PFGE樹狀圖結果顯示雞和野生鳥類沙門氏菌可各自分群,且野生鳥類的分枝繁雜,說明野生鳥類沙門氏菌的基因指紋變化性較雞大。

Salmonella can infect wild birds, and cause disease even death. Therefore the Salmonella from wild birds may spread to human or domestic animals, causeing public health problems. In this study, we aimed at the shelter wild birds in wildlife first aid station of Endemic Species Research Institute, to investigate the Salmonella prevalence, prevalent serotype, and antimicrobial sensitivity patterns. Using statistics to analyze the correlative factors, and PFGE to analyze the relativeness between Salmonella in wild birds and chickens. From March 2011 to February 2012, 237 colcal or feaces swabs were collected from wild brids. The culture mothod was according to ISO 6579: 2002. The total prevalence of Salmonella was 9.7% (23/237). The Salmonella were subjected to antimicrobial susceptibility tests and serotype analysis. The results of serotype were 13 isolates of S. Abany, 3 isolates of S. Newport, 2 isolates of S. Montevideo, 1 isolates of S. Weltevreden, 1 isolates of S. Schwarzengrund and 3 isolates of unclassifiable serotype. In antimicrobial susceptibility tests, ampicillin, chloramphenicol, florfenicol, trimethoprim- sulphamethoxazole, nalidixic acid had higher degree of resistance, and the percentage of multidrug resistance was 70.83%. Salmonella-positive birds were retested after two weeks, 9 birds still showed positive results. Rainfull, monthly average temperature and rainy day were used in correlative factors analysis, only the rainfull had significant correlation (p<0.05). PFGE dendrogram showed the isolates from chickens and wild birds could become two different clusters respectively, and the clusters of wild birds were very complicated, which could explain the genetic fingerprint of Salmonella of wild birds was more veriable than chickens.
URI: http://hdl.handle.net/11455/15532
其他識別: U0005-1007201217531900
Appears in Collections:獸醫病理生物學所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.