Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1554
標題: 高速主軸之軸向動態誤差補償研究
A Study of the High-Speed Spindles Compensation for the Dynamic Axial Error
作者: 蕭蕙玲
Hsiao, Hui-Ling
關鍵字: permanent magnet motor, dynamical axial error, error compensation, ARX model.;永磁馬達, 內藏式高速主軸, 攻牙中心機, 軸向動態誤差補償, ARX, 溫度感測器
出版社: 機械工程學系所
引用: [1] 賴建宏,2010,"智能化主軸的熱誤差建模與振動監視",國立中正大學碩士論文。 [2] 鄭富榮,1993,"綜合加工機主軸熱變形之即時補償",國立中正大學碩士論文。 [3] 蔡昆妙,1994,"電腦輔助工具機熱誤差量測與補償",國立中正大學碩士論文。 [4] 葛禎瑋,1996,"工具機加工中熱誤差補償控制技術",國立台灣大學碩士論文。 [5] 孟令人,1998,"高精度工具機熱變形補償控制技術",國立台灣大學碩士論文。 [6] Jianguo Yang, Jingxia Yuan , Jun Ni,1998," Thermal error mode analysis and robust modeling for error compensation on a CNC turning center", International Journal of Machine Tools & Manufacture, Vol.39, No.9, Pages 1367-1381. [7] 謝宗哲,1998,''高精度工具機熱誤差補償技術'',國立中興大學碩士論文。 [8] 陳俊榮,1999,"高速主軸之熱變形分析及量測",國立中正大學碩士論文。 [9] K-D Kim, M-S Kim, S-C Chung, 2004,"Real-time compensatory control of thermal errors for high-speed machine tools", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol.218, Pages 913-924. [10] 沈建文,2005,"立式加工中心機結構改善與熱變位補償",大葉大學碩士論文。 [11] 華建鈞,2008,"臥式綜合加工機熱誤差之量測與補償",國立中正大學碩士論文。 [12] R. Ramesh, M.A. Mannan , A.N. Poo, July 2000, "Error compensation in machine tools — a review Part II: thermal errors", International Journal of Machine Tools & Manufacture, Vol.40, Issue 9, Pages 1257-1284. [13] 林茂文,1992,"時間數列分析與預測",華泰文化事業股份有限公司。 [14] 吳柏林,1995,"時間數列分析導論",華泰文化事業股份有限公司。 [15] Andrew F. Siegel,2003,"實用統計學(第五版)",科大文化事業股份有限公司。 [16] 方世榮,1998,"統計學導論",華泰文化事業股份有限公司。 [17] 謝明瑞,1996,"統計學概論",台北:國立空中大學。 [18] 孫清華,1992,"感測器應用電路的設計與製作",全華科技圖書公司。
摘要: 
近年3C電子產品蓬勃發展,用來生產其產品的工具母機品質為了符合3C電子零件產品的高稼動率之生產需求,永磁高速馬達主軸逐漸被廣泛運用,因其與傳統的感應馬達主軸比起來有高反應速度、高精度與低耗能等優勢。而主軸的熱變形主要來自於軸承與馬達發熱之熱源造成熱脹冷縮之變形所產生,但熱源的冷卻以及隔絕等方法並無法完全改善主軸溫升熱變形之誤差,所以必須要多加一個軟體補償的方式以解決此問題,並且此方法有所謂成本較低的優勢。
本論文分成兩部分,第一部分:針對單一永磁馬達高速主軸補償情況之改進,使用渦電流位移計與PT100溫度感測器電路模組作為主軸的溫度以及熱變位之量測工具,在這裡探討高速主軸在變轉速時補償的突波問題,所以我們使用以下三種建模方式:1)轉速與馬達定子溫度參數同時建立之模型2)只用馬達定子溫度參數建立之模型3)使用轉速與馬達定子溫度分開建模之複合模型,討論這三者之間的差異與建模預測的改善程度,1)法可將變轉速時刻的原始誤差7.108um改善成-2.451um;2)法可改善成-1.486um;3)法則可改善成-0.35um,結果顯示3)法的建模預測結果最好;另外,現階段埋藏在馬達定子內的溫度計在溫度上升與下降時有訊號不一致的情形,可能影響建模結果,所以在這裡也做PTC130、PT100、KTY84三種溫度計的比較,探討馬達定子溫度計的取代方案,結果顯示感測器的線性與重複性程度由高到低為PT100> KTY84> PTC130。如果將溫度計替換成PT100,較能精確地量測到正確的溫度,將可改善補償情況的正確性;而KTY84的成本又比PT100低,所以有成本考量時,可以考慮使用KTY84。
第二部分:攻牙中心機在3C精密零組件的鑽孔加工上,也扮演著重要的角色,主軸運轉時從主軸發熱之熱源導致主軸熱變形外,其熱源傳到機台結構上也會造成結構上的熱變形,所以此部分主要針對整個機台,使用渦電流位移計與PT100溫度感測器電路模組作為主軸的溫度以及熱變位之量測工具,讀取溫度訊號及主軸控制器轉速訊號,使用ARX建模後做比較,結果可將原本16um的誤差降低至7um內。

The thermal error problem of conventional induction motor high speed spindle technology is an important point that we have to solve for machine tools. The Z axial error of conventional induction motor high speed spindle not only produced by heat source of bearing but also the centrifugal force when spindle turning. And thermal error compensation has been used the solve this problem for several years . In this paper, there are two case:
Case1: We try to get the better Z axial error compensation by using1)the model build by rpm with the motor temperature 2)the model build by the motor temperature 3)the congruence model build by rpm with the motor temperature. Compare these models ,the 3) is the best way of these three methods. The axial error was reduced from 7.108um to -0.35um. When temperature raised and descended, the signal of the temperature sensor in the conventional induction motor high speed spindle are deferent when they are in the some temperature. So we tested three temperature sensor: PTC130, PT100, and KTY84 to realize the characteristic of these three temperature sensor and conferred which one is better.
Case 2: Tapping machine is important for the manufacture of 3C products. When spindle turning, the heat source of bearing and motor will conduct to the components of machine and it''s will change the distance of work point between tool. In this paper, we used PT100 temperature sensor to take the temperature signal of the tapping machine and used the ARX model build by using temperature and rpm data to compensation this thermal error. In the end, the axial error was reduced from 16 um to 7um.
URI: http://hdl.handle.net/11455/1554
其他識別: U0005-1708201115494300
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.