Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1556
標題: 以鋁疊層法製作具奈米膠囊陣列結構之陽極氧化鋁膜
Growing Nano-Capsule Array Inside an Alumina Membrane by the Laminate Foils Approach
作者: 范振益
Fan, Jen-Yi
關鍵字: anodic alumina oxide;陽極氧化鋁膜;anodization;laminate foils approach;nano-capsule array;陽極處理;鋁疊層法;奈米膠囊陣列結構
出版社: 機械工程學系所
引用: [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991). [2] H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerene,” Nature (London) 318, 162 (1985). [3] W. I. Park, G-C Yi, M. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15, No 6, 526-529 (2003). [4] Y. T. Pang, G. W. Meng, L. D. Zhang, W. J. Shan, C. Zhang, X. Y. Gao, A. W. Zhao, and Y. Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J Solid State Electrochem 7, 344-347 (2003). [5] G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, and Y. W. Du, “Fabrication and magnetic properties of ordered 20 nm Co-Pb nanowire arrays,” Solid State Communications 130, 541-545 (2004). [6] M. Mikhaylova, M. Toprak, D. K. Kim, Y. Zhang, and M. Muhammed, “Nanowire formation by electrodeposition in modified nanoporous polycrystalline anodic alumina templates,” Mat. Res. Soc. Symp. Proc. Vol. 704 (2002). [7] Y. Fanga, D. Agrawala, G. Skandanb, and M. Jainb, “Fabrication of translucent MgO ceramics using nanopowders,” Materials Letters 58, 551- 554 (2004). [8] X. Wang, G. R. Han, “Fabrication and characterization of anodic aluminum oxide template,” Microelectronic Engineering 66, 166-170 (2003). [9] A. T. Tilke, F. C. Simmel, R.H Blick et al. Progress in Quantum Electronics 25, 97-138 (2001). [10] S. Luryi S., J. M. Xu, and A. Zaslavsky, eds. Future Trends in Microelectronics. New York: John Wiley and Sons. 313-322 (1999). [11] V.M. Shalaev, M. Moskovits, and D. C. Washington, American Chemical Society 268 (1997). [12] A. S. Edelstein, R. C. Cammaeata, Institute of Physics Pub 124 (1996). [13] David F. Ollis, Suface Chemistry and catalytics 3, 405-411 (2000). [14] B.Shou, H. Pengxiang, and F. Yueying et al. Chinese Journal of materials Research 15, 77-82 (2001). [15] David H. Freedman, Science 254, 230 (1994). [16]N. Oku, S. Namba, and S. Okada, Biochim Biophys Acta 1126, 255 (1992). [17] S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee, “Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization,” Nanotechnology 16, 850-858 (2005). [18] W. J. Yu, Y. S. Cho, G. S. Choi, and D. Kim, “Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template,” Nanotechnology 16, S291-S295 (2005). [19] T. Yanagishita, K. Nishio, and H. Masuda, “Fabrication of Metal Nanohole Arrays with High Aspect Ratios Using Two-Step Replication of Anodic Porous Alumina,” Adv. Mater. 17, No. 18, 2241-2243 (2005). [20] L. Kim, S. M. Yoon, J. Kim, and J. S. Suh, “Controllable fabrication of tube-in-tubes using anodic aluminum oxide templates,” Synthetic Metals 140, 135-138 (2004). [21] E. J. Bae, W. B. Choi, K. S. Jeong, J. U. Chu, G. S. Park, S. Song, and I. K. Yoo, “Selective Growth of Carbon Nanotubes on Pre-patterned Porous Anodic Aluminum Oxide,” Adv. Mater. 14, No. 4, 277-279 (2002). [22] A. P. Li, F. Miller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. Vol. 11, No. 6 , 483-486 (1999). [23] R. Krishnan, H. Q. Nguyen, C. V. Thompson, W. K. Choi, and Y. L. Foo, “Wafer-level ordered arrays of aligned carbon nanotubes with controlled size and spacing on silicon,” Nanotechnology 16 841-845 (2005). [24] S. H. Jeong, K. H. Lee, “Fabrication of the aligned and patternde carbon nanotube field emitters using the anodic aluminum oxide nano-template n a Si wafer,” Synthetic Metals 139, 385-390 (2003). [25] J. Yan, G. V. Rao, M. Barela, D. A. Brevnov, Y. Jiang, H. Xu, G. P. Lopez, P. B. Atanassov, “Growth of patterned nanopore arrays of anodic aluminum oxide,” Adv. Mater. 15, No. 23, 2015-2018 (2003). [26] Z. Sun, H. K. Kim, “Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films,” Appl. Phys. Lett. Vol. 81, No. 18, 3458-3460 (2002). [27] H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, and K. Nishio, “Lasing from Two-Dimensional Photonic Crystals Using Anodic Porous Alumina,” Adv. Mater. 18, No. 2 , 213-216 (2006). [28] A. Saedi, M. Ghorbani, “Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template,” Materials Chemistry and Physics 91, 417-423 (2005). [29] Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, X. S. Peng,C. H. Ye, and L. D. Zhang, “Alumina nanowire arrays standing on aporous anodic alumina membrane,” Nanotechnology 15, 189-191 (2004). [30] G. J. Wang and C. S. Peng, “Control Porous Pattern of Anodic Aluminum Oxide by Foils Laminate Approach,” Journal of Nanoscience and Nanotechnology, 6(4), 1004-1008 (2006). [31] V. Lehmann, H. Föll, J, “Formation mechanism and properties of electrochemically etched trenches in n-type silicon,” J. Electrochem. Soc. 137 (1990). [32] Uhlir, A., “Electrolytic shaping of germanium and silicon. Bell System Tech,“ J., 1956. 35: p. 333-347 (1956). [33] F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminium,” J. Electrochem Soc. 100, 411 (1953). [34] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, "Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism," Nature. 359 710-712 (1992). [35] R.B. Wehrspohn, J. N. Chazalviel, and F. Ozanam, “Electrochemical preparation of porous semiconductors: from phenomenology to understanding,” Materials Science & Engineering B 69-70, 1-10 (2000). [36] S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christopherser, and H. Föll, “Formation of porous layer with different morphologies during anodic etching of n-Inp,” J. Electrochem. Soc. Lett. 3 (2000). [37] F. Li, L. Zhang, R. M. Metzger, “"On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chem. Mater. 10, 2470 (1998). [38] H. Masuda, F. Hasegwa, S. Ono, “Self-ordering of cell arrangement. of anodic porous alumina formed in sulfuric acid solution,,” J. Electrochem. Soc. 144, L127 (1997). [39] G. E. Thompson, “Porous anodic alumina: fabrication, characterization and applications,” Thin Solid Film 297, 192 (1997). [40] G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Good Nucleation, “Growth of Porous Anodic Film on Aluminium,” Nature 272, 433-435 (1978). [41] K. Shimizu, S. Kobayashi, G. E. Thompson, and G. C. Wood, “Electron Beam Induced Crystallization of Anodic Barrier Films on Aluminium: Influence of incorporated anions,” J. Appl. Electrochem. 15, 781-783 (1985). [42] O. Jessensky, F. Mu¨ ller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. Vol. 72, No. 10, 1173-1175 (1998). [43] H. Masuda. H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamaura, “Highly ordered nanochannel-array. architecture in anodic alumina,” Appl. Phys. Lett. Vol. 71, No. 19, 2770-2772 (1997). [44] A. A. Mazhar, F. E. Heakal, and K. M. Awad, ”Some formation factors affecting the dissolution behaviour of anodic oxide films on aluminum in H3PO4,” Thin Solid Films 192, 193-199 (1990). [45] S. Ping Lee, Nucl. Sci. J. Vol. 15, 235-244, (1978). [46] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,“ J Appl. Phys. 84, No.11 6023-6026 (1998). [47] H. Masuda, K. Fukuda, " Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995). [48] H. Masuda, K. Yada, A. Osaka, “Self-Ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37 (1998). [49] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. Vol. 78, No. 1, 120-122 (2001). [50] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Adv. Mater. 13, No. 3, 189-192 (2001)
摘要: 
摘要
以鋁疊層法可製作具雙向成長之奈米孔洞陣列之陽極氧化鋁膜,本研究主要目的乃是探討此雙向成長奈米孔洞之成長機制。研究中先設計二種不同實驗,驗證此雙向成長之奈米孔洞陣列並非因電解液滲入夾具內而使漏液在純鋁表面的刻痕中反應之結果。實驗證實此現象並非漏液所造成。吾等進而將鋁疊層試片等效為間距極小之電容,當進行鋁疊層實驗時,電容將產生與陽極處理電壓反向之感應電壓,此感應電壓使作用於鋁試片之電場減小,而氧化鋁層厚度增加,氧離子在電場作用下會穿透氧化鋁層與未氧化之純鋁反應,細胞底部氧化層之Al-O鍵較容易極化產生焦耳熱並將其溶解,而在細胞底部產生額外的孔洞陣列,本研究進一步比較單層鋁試片/疊層鋁試片之管道長度以及利用光阻襯墊實驗證明此假設之正確性;並以控制鋁疊層氧化時間之實驗,成功製作出具有奈米膠囊陣列結構之陽極氧化鋁膜。此一特殊結構並未見諸於已發表之相關文獻中。

The foils laminate approach can be implemented to grow bi-directional porous pattern from both the top and bottom surfaces of an aluminum foil. It was intuitively inferred that leakage of the etchant between the foils may a feasible cause to have the upward pores grow in the notches of the unpolished surface. The leakage blocking and triple layers laminate experiments were conducted to verify this hypothesis. Experimental results disprove this leakage hypothesis. It is further inferred that applied voltage is diluted by the aluminum foils induced capacitor. The voltage reducing effect suppresses the dissolution more than oxidation such that an additional porous array that grows down from the cell base is formed. This voltage reducing mechanism has been verified by the pore height comparison and washer insertion experiments. Moreover, the laminate foils anodization was implemented to grow a nano-capsule array inside an alumina foil. This special structure of anodic aluminum oxide is novel.
URI: http://hdl.handle.net/11455/1556
其他識別: U0005-1007200616021200
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.