Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1559
標題: 具圓形管道之組織工程人工微血管支架製作與細胞培養
Fabrication and Cell Culture of Microvessel Scaffold with Circular Cross-section Microchannels
作者: 何官璇
Ho, Kuan-Hsuan
關鍵字: Softlithography;軟微影製程;Oxygen plasma bonding;BEC;JSR photoresist;氧電漿接合;牛頸動脈內皮細胞;JSR光阻
出版社: 機械工程學系所
引用: [1] 宋信文、梁晃千,“建立人類的人體工房-組織工程,”科學發展 Vol. 362,6-11,2003。 [2] J. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. Kaazempur-Mofrad, J. P. Vacanti, “Microfabrication technology for vascularized tissue engineering,” Biomedical Microdevices 4(3): 167-175 , 2002. [3] M. Shin, K. Matsuda, O. Ishii, H. Terai, M. Kaazempur-Mofrad, J. Borenstein, M. Detmar, J. P. Vacanti, “Endothelialized Networks with a Vascular Geometry in Microfabricated Poly (dimethyl siloxane),” Biomedical Microdevices 6(4),269–278 , 2004. [4] C. Fidkowski, M. Kaazempur-Mofrad, J. Borenstein, J. P. Vacanti, R. Langer, Y. Wang, “Endothelialized Microvasculature Based on a Biodegradable Elastomer,” Tissue Engineering11(1/2),302-309 ,2005. [5] G. J. Wang, C. L. Chen, S. H. Hsu, and Y. L. Chiang, ”Bio-MEMS Fabricated Artificial Capillaries for Tissue Engineering,” J. Microsystem Tech. 12(1-2),120-127, 2005. [6] Wang, G. J. and Hsu, Y. F., “Structure Optimization of Microvascular Scaffolds” Biomedical Microdevices 8(1),51-58, 2006. [7] Wang, G. J., Hsu, Y. F., Hsu, S. H., Horng, R. H. “JSR Photolithography Based Microvascular Fabrication and Cell Seeding” Biomedical Microdevices 8(1), 17-28, 2006. [8] Younan Xia and George M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28, 153–84,1998. [9] E.Leclerc , B.David , L.Griscom , B.Lepioufle , T.Fujii , P.Layrolle , C.Legallaisa , “Study of osteoblastic cells in a microfluidic environment,” Biomaterials 27,586–595 ,2006. [10] E. Leclerc, K.S. Furukawa, F. Miyata, Y. Sakai, T. Ushida, T. Fujii, “Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications,”Biomaterials 25,4683–4690,2004. [11] http://www.bio-invigor.com/big5/product/聚乳酸聚甘醇酸共聚物簡介 [12] 黃博偉,“生物可分解材料市場與應用趨勢,”ITIS專欄 4,2004. [13] Yang, L. J., Chen, Y. T., Kang, S. W., Wang, Y. C., “Fabrication of SU-8 embedded microchannels with circular cross-section,” International Journal of Machine Tools & Manufacture 44, 1109-1114, 2004. [14] Yuheon Yi, Joo H. Kang, Je-Kyun Park, “Moldless electroplating for cylindrical microchannel fabrication,” Electrochemistry Communications 7 , 913–917, 2005. [15] Alvaro Mata,Cynthia Boehm,Aaron J. Fleischman,George Muschler ,Shuvo Roy, “Analysis of Connective Tissue Progenitor Cell Behavior on Polydimethylsiloxane Smooth and Channel Micro-Textures,” Biomedical Microdevices 4:4,267-275,2002. [16] http://www.getgoal.com.tw/tech/tech-3.htm [17] 朱佳仁,“工程流體力學”,科技圖書股份有限公司,2001。 [18] 林志益,“微渠道內流場之觀察與速度量測”,國立中山大學機械與機電工程學系研究所碩士論文,2004。 [19] R. J. Adrian, “Particle-Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, Vol. 23 , 261-304, 1991. [20]http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookcir- cSYS.html [21]http://www.biol.ntnu.edu.tw/information/juniorbio/chp04/chp4.htm [22]http://zh.wikipedia.org/wiki/%E8%A1%80%E7%AE%A1 [23]http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookcir- cSYS.html [24]丁志明、方維倫等人 ,“微機電系統技術與應用,”行政院國科會精密儀器發展中心出版,418~419,2002. [25]蘇建彰、陳建洋等人, “轉印模仁之奈米結構製作,”機械工業雜誌 269, 44~55, 2005. [26] R. W. Stark, M. Sakai Stalder and A. Stemmer, “Microfluidic Etching Driven by Capillary Forces for Rapid Prototyping of Gold Structures,” Microelectronic Engineering, Vol. 67-68 , 229-236, 2003. [27] T. Murakami, S. Kuroda and Z. Osawa, “Dynamics of Polymeric Solid Surfaces Treated with Oxygen Plasma:Effect of Aging Media After Plasma Treatment,” Journal of Colloid and Interface Science, Vol. 202 , 37-44, 1998. [28] 林大鈞,“內皮細胞植覆於聚胺基甲酸酯人工小血管之評估”,國立中興大學化學工程學系研究所碩士論文,2001。 [29] http://web2.tmu.edu.tw/B108091005/2-2-1.htm
摘要: 
組織工程目前所面臨之最大挑戰之ㄧ乃是人造器官因缺乏血液循環系統而導致細胞缺乏新陳代謝而死亡的情形,因此與血液循環系統相關之人工微血管研究,亦日漸重要。在已發表之人工微血管相關文獻中,微血管支架的截面大多呈現矩形,與人體微血管在未受壓力變形狀態下之圓形截面有所差異,因此對於如何製作具圓形管道之人工微血管支架有其深入研究之必要性。本研究之主旨乃是希望藉著軟微影製程與組織工程技術的結合,發展具圓形管道之功能性人工微血管支架。
研究中以FEMLAB有限元素分析模擬軟體,針對微管道進行最佳化設計。並以多分支大面積管道為原則,進行複雜微管道之設計,經由大面積微管道之設計,來避免細胞培養時可能發生之染菌情形。
在製程方面,以微影製程技術製作JSR光阻母模,配合光阻熱熔法形成半圓形母模結構,再以澆鑄翻模方式製作以PDMS為基材之半圓形微管道結構,最後以氧電漿接合方式形成組織工程用具圓形截面之PDMS微血管道支架。此製程具有成本低且步驟簡單之優點,並可製作出良好精度之微管道結構。除此之外,在生物可降解材料管道研究上,本研究建立出以PLA為基材之人工微血管道製作步驟。
在細胞培養上,由靜態細胞培養結果顯示,PDMS因具有良好之生物相容性,因此細胞於PDMS微管道內能有很好之貼附生長情形,但由於靜態培養缺乏養分與氣體之交換機制,因此細胞於管道內不能存活很久。因此本研究另採用動態與類動態培養方式,進行PDMS微管道內培養液的置換,並使細胞於管道順利生長。在研究中以類動態培養方式,能使細胞於管道內存活達4星期左右,由此可知類動態培養之可行性。

One of the continuing, persistent challenges with tissue engineering is the lack of intrinsic blood vessels to transport nutrient and metabolite, thus making it difficult for any implanted cells to obtain sufficient oxygen and nutrients to survive, and/or function properly. It is thus desired to provide the artificial tissues with artificial microvessels. For the published literatures regarding the microvessel scaffold, the soft lithography was the main fabrication technique, resulting microchannels with rectangular cross-section. In general, the real microvessels under no external pressure have circular cross-section. Although the velocity profiles inside a rectangular and a circular microchannel such as the microvessel are very similar, there are always dead volumes around the corners of a rectangular microchannel. The dead volume problem likely leads to inefficient circulations of nutrient and oxygen during the cell seeding. It is thus desired to put efforts on developing techniques in fabricating microvessel scaffolds with circular microchannels.
In this research, a new process that integrates the photoresist melting and soft lithography techniques to fabricate microvessel scaffolds with circular microchannels is proposed. The commercial software FEMLAB is adopted to optimize the structure of the microvessel scaffold. The photolithographic technique is applied to fabricate the photoresist JSR based microstructure that is then melted to the final replica mold with its structure having convex semicircle cross-section. The replica mold is hence used to replicate PDMS to the top and bottom plate of a microvessel scaffold. These two half plates are bonded after having surface treatment by inductive coupled plasma (ICP) to form the complete scaffold with circular microchannels. Finally, the bovine endothelial cells (BEC) are cultured into the scaffold. Encouraging results by semi-dynamic seeding are observed. Cells can survive in the scaffold up to four weeks.
URI: http://hdl.handle.net/11455/1559
其他識別: U0005-1007200619080100
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.