Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1560
標題: 結合結構與機構的多領域最佳化設計
Multidisciplinary Design Optimization of Structures and Mechanisms
作者: 楊震銘
Yang, Chen-Ming
關鍵字: multidisciplinary design optimization;多領域最佳化
出版社: 機械工程學系
摘要: 
多重領域最佳化是指在最佳化設計時,同時考慮多個不同領域的設計與分析,使其在設計過程中,對於不同領域間的設計限制之考量在設計時具有同時滿足各別領域的設計之限制要求,以達到在所有的領域中可找到最好的結果。
本文內容以結合機構運動分析與結構有限元素分析之多重領域
最佳化設計為題,來探討多重領域最佳化設計的問題。就各別的領域
所考量的設計目標與其所相應的限制條件,以及其所相應的設計變數
使用多層次分解過程法(Multilevel Decomposition Procedure)來各別針對機構學與結構學這兩個領域的設計要求作最佳化。多層次分解法的執行以機構最佳化為上層,目標是滿足各別機構運動的需求,如路徑誤差之最小、快速回復運動等等,限制條件隨各別機構而不同。下層是結構的最佳化,目標是使得機構的重量最輕,結構應力小於允許應力或是自然振動頻率的限制。在機構分析方面以MDI/ADAMS執行機構分析部分的最佳化設計,再以經由機構分析後所得之相關結果以P3/PATRAN有限元素之前後處理器來建構出結構之有限元素模型。籍由MSC/NASTRAN有限元素分析軟體來執行結構的有限元素分析擷取靈敏度值與應力或頻率,並以序列線性規化法(Sequential Linear Programming)來求最佳解。本文使用五個機構設計實例進行多重領域的最佳化,並得到不錯的結果。

The multidisciplinary optimization includes different disciplines in the design optimization process. While the objective functions are minimized, the constraints for each discipline are satisfied simultaneously.
This thesis takes the fields of mechanism and structure as the concerned disciplines in the multidisciplinary optimization. The multilevel decomposition method is used to solve the problem. The objective and constraints for each discipline are separately defined. Two levels are used in this thesis. The first level is for the optimization of kinematics of some mechanisms. The objectives are to minimize the path error or some other functions subject to constraints on linkage length, joint location, mass moment of inertias and transmission angle. The second level is to optimize the structure of mechanism. The objective is to minimize the structural weight and subjected to stress or natural frequency constraints. The MDI/ADAMS is used to do the synthesis and analysis of mechanisms. The P3/PATRAN uses the result generated from ADAMS to create the finite element model for structural analysis and design. The MSC/NASTRAN is then employed to perform finite element analyses and design sensitivity analyses of structure. The sequential linear programming method is used to solve the structural optimization problems. Five mechanism design examples are illustrated. The results are good.
URI: http://hdl.handle.net/11455/1560
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.