Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15640
標題: 孤立內波通過直立平板周邊渦流流場之實驗研究
Experimental Study on the Characteristics of Vortices Induced by a Internal Solitary Wave Propagating over a Submerged Vertical Plate
作者: 林昂
Lin, Ang
關鍵字: Internal Solitary Wave;孤立內波;流場
出版社: 土木工程學系所
引用: 1. Baines, P.G. and Fang, X.H. (1985) “Internal tide generation at a continental shelf/slope junction: a comparison between theory and a laboratory experiment.”, Dyn. Atmos. Oceans, 9: 297-314. 2. Bogucki, D. and Garrett, C. (1993) “A simple model for the shear-induced decay of an internal solitary wave.”, J. Phys. Oceanography, 23: 1767-1776. 3. Chen, C.Y., (2006) “Laboratory experiments on internal wave evolution on uniform slopes and topographic sills. ”, Ph.D. dissertation, National Sun Yat-Sen University, Taiwan. 4. Ekman, V.M., (1904) “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Sci. Results, 5(15) :1-150. 5. Farmer, D.M. (1978) “Observation of long nonlinear internal waves in a lake. “, J. Phys. Oceanography, 8(1): 63-73. 6. Fructus, D. & Grue, J. (2004) “Fully nonlinear solitary waves in a layered stratified fluid. ”, J. Fluid Mech., 505: 323–347. 7. Garrett, C. and W. Munk, (1979) “Internal Waves in the Ocean.”, Annual Review of Fluid Mechanics. 11: 339-369. 8. Grue, J., Jensen, A., Rusas, P.O., and Sveen, J. K. (1999) “Properties of large amplitude internal waves. ”, J. Fluid Mech., 380: 257-278. 9. Haury, L. R., Briscoe, M.G. and Orr, M. T. (1979) “Tidally generated internal wave packets in Massachusetts Bay. “, Nature, 278-312. 10. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995) “Experimental observation of interanl symmetric solitary waves in a two-layer fluid.”, Fluid Dynamics Research, 15 (2): 89-102. 11. Hsu, M.K., Liu, A.K., and Liu, C. (2000) “A study of internal waves in the Chinaand Yellow Sea using SAR. “, Continental Shelf Research, 20: 389-410. 12. Johnsona, D.R., Weidemann, A., and Pegau, W.S. (2001) “Internal tidal bores and bottom nepheloid layers. ”, Continental Shelf Research, 21: 1473-1484. 13. Kao, T.W., Pan, F.S. and Renouard, D. (1985) “Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. ”, J. Fluid Mech., 159: 19-53. 14. Koop, C.G. and Butler, G. (1981) “An investigation of internal solitary waves in a two-fluid system.”, J. Fluid Mech., 112: 225-251. 15. LeBlond, P.H. and Mysak, L.A. (1978) “Waves in the Ocean.” , Amsterdam: Elsevier. 16. Martin, A.J., Walker, S.A. and Easson, W.J. (1998) “An experimental investigation of solitary internal waves. “, Proc. 17th Inter. Conf. Offshore Mech. & Arctic Eng., ASME. 17. Maxworthy, T. (1979).“A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. ”, J. Geophys. Res., 84, 338-346. 18. Michallet, H. and Barthelemy, E. (1997) “Ultrasonic probes and data processing to study interfacial solitary waves. “, Exp. Fluid. , 22: 380-386. 19. Michallet, H. and Barthelemy, E. (1998) “Experiments study of interfacial solitary waves. “, J. Fluid Mech., 366: 159-177. 20. Osborne, A.R., Burch, T.L. and Scarlet, T.I. (1978) “The influence of internal waves on deepwater drilling.”, J. Petroleum Tech., 30: 1497-1504. 21. Osborne, A.R. and Burch, T.L., (1980) “Internal Solitons in the Andaman Sea. ”, Science, 208(43):451-460. 22. Sherwin, T.J. (1988) “Analysis of an internal tide observed on the Malin Shelf, Northof Ireland.”, J. Phys. Oceanography, 18(7): 1035-1050. 23. Sveen, J.K., Y. Guo, P.A. Davies, and J. Grue, (2002) “On the breaking of internal solitary waves at a ridge. ”, J. Fluid Mech., 469 (25): 161-188. 24. Thorpe, S.A., (1971) “Asymmetry of the internal seiche in Loch Ness. “, Nature 231(4301): 306-308. 25. Thorpe, S.A. (1975) “The excitation, dissipation, and interaction of internal waves in the deep ocean.”, J. Geophysical Research, 80(3): 328-338. 26. Vlasenko, V., and Hutter, K. (2002) “Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. “, J. Phys. Oceanography, 32(6) : 1779-1793. 27. Wessels, F. and Hutter, K. (1996) “Interaction of internal waves with a topographic sill in a two-layered fluid. ”, J. Phys. Oceanography, 26 (1): 5-20. 28. 陳信旭(2004):「孤立內波的傳遞及在單斜坡上反射之實驗研究」,國立中山大學海洋物理研究所碩士學位論文。 29. 郭青峰(2005):「孤立內波的傳遞受障礙物影響之實驗研究」,國立中山大學海洋物理研究所碩士學位論文。 30. 謝世圳(2007):「單圓柱尾流流場特性之實驗研究」,國立中興大學土木工程學系研究所博士學位論文(初稿)。
摘要: 
本研究在精密波浪實驗水槽內進行實驗研究。為瞭解孤立內波內部流場機制,並簡化模型厚度對流場之影響使用直立薄平板為模型,以相同上下水層密度比(ρ1/ρ2 = 1.021)、相同水深比(下沈型 h1/h2 = 1/3;上舉型 h1/h2 = 3)之水體條件及相同之造波條件(L = 15 cm;η0 =10 cm)生成穩定的孤立內波,嘗試以高速攝影機配合顆粒追蹤法之可視化定性觀察與質點影像測速(PIV)技術之定量分析。首先觀測無障礙物時兩種不同類型之孤立內波流場(下沈型與上舉型),接著再探討孤立內波通過不同障礙高度之直立平板時,直立平板周邊二維流場之變化。
從左側來流之下沈型孤立內波通過直立平板,會於直立平板上游側形成逆時針方向之漩渦,此漩渦之強度與直立平板之障礙高度有關;而上舉型孤立內波通過直立平板,則會在直立平板下游側形成順時針方向之渦流,隨著障礙高度的增加,越過直立平板之水流流速隨之增加,直立平板下游側形成之漩渦亦隨之增強。
根據所量測之速度與渦度場資料,針對下沈型孤立內波引致之逆時針渦流以及上舉型孤立內波通過直立平板所形成的順時針渦流,分別將渦度積分所得之環流量與時間與時間變化情形進行詳細之探討,兩者均隨時間呈線性增加。

The purpose of the study is to understand flow field induced by the internal solitary wave propagating over a submerged vertical plate model. A submerged vertical plate was used for simplified model. The experiments were conducted at the same density ratio (ρ1/ρ2 = 1.021) and the same thickness ratio of the upper and lower layers (depression: h1/h2 = 1/3; elevation: h1/h2 = 3). The same wave condition of the stable internal solitary wave is L equals 15 cm and η0 equals 10 cm. The high-speed camera was used to capture the image of flow field. The particle tracing method was utilized for flow visualization. The advanced particle image velocimetry was first used to quantitatively observe two different type internal solitary waves in absence of obstacle. The characteristics of vortices induced by a internal solitary wave propagating over a submerged vertical plate were investigated in detail.
The vortex at the upstream side was induced by a internal solitary wave of depression. The vortex strength is related to the height of the vertical plate. On the other hand, the vortex at the downstream side was triggered by a internal solitary wave of elevation. The velocity of the overtopping flow increases with the increase of the height of the vertical plate. The vortex strength also increases with the increase of the velocity of the overtopping flow behind the vertical plate.
Base on the measured velocity and vortex data, the vortex circulation was analyzed with non-dimensional time. The variation with time of the vortex circulation induced by a internal solitary wave propagating over a submerged vertical plate was observed.
URI: http://hdl.handle.net/11455/15640
其他識別: U0005-2708200713430400
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.