Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15646
標題: 孤立波通過潛沒圓柱之周邊流場特性研究
Study on the Characteristics of Flow Field Induced by a solitary Wave Propagating over a Submerged Circular Cylinder
作者: 程文泰
Cheng, Wen-Tai
關鍵字: Solitary wave;孤立波;Submerged circular cylinder;潛沒圓柱
出版社: 土木工程學系所
引用: 1.Chang, K. A., Hsu, T. J., and Liu P. L. –F., 2001. “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle Part I. solitary waves,” Coastal Engineering, Vol. 44, pp. 13~36. 2.Chang, K. A., Hsu, T. J., and Liu P. L. –F., 2001. “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle Part II. solitary waves,” Coastal Engineering, Vol. 52, pp. 257~283. 3.Daily, J. W. and Jr. Stephan S. C., 1953. “Characteristics of the solitary wave”, Trans. ASCE, Vol. 118, pp. 575~587. 4.Dean, R. G. and Dalrymple, R. A., 1984. “Water wave mechanics for engineers and scientists”, Prentice Hall, Englewood Cliffs, New Jerscy, pp. 314~318. 5.Dong, C. M. and Huang C. J., 1999. “Vortex generation in water waves propagating over a submerged rectangular dike,” Proc. 9th Int. Offshore and Polar Engineering, Conf., III, pp. 388~395. 6.Goring, D. G. 1978. Tsunamis - the propagation of long waves onto a shelf. Report KH-R-38, California Institute of Technology. 7.Goring, D. G. and Raichlen F., 1980. “The generation in water waves in the laboratory,” Proc. 17th Int. Conf. Coastal Engineering, ASCE, pp. 763~783. 8.Goring, D, G. and Raichlen F., 1990. “Propagation of long waves onto shelf,” J. Waterway, Port, Coastal, and Ocean Engineering, pp. 118, 43-61. 9.Grilli, S. T., Subramanya R., Svendsen I. A., and Veeramony J., 1993. “Shoaling of solitary waves on plane beaches,” J. Waterway, Port, Coastal, and Ocean Engineering, Vol. 120, pp. 609~628. 10.Grilli, S. T., Losada M. A., and Martin F., 1994. “Characteristics of solitary wave breaking induced by breakwaters,” J. Waterway, Port, Coastal, and Ocean Engineering, Vol. 120, pp. 609~628. 11.Gupta, V. P., Ranga-Raju, K. G. 1987. “Separated flow in lee of solid and porous fences.” Journal of Hydraulic Engineering, Vol. 113, pp. 1266~1276. 12.Huang, C. J. and Dong C. M., 2001. “On the interaction of a solitary wave and a submerged dike,” Coastal Engineering, Vol. 43, pp. 265~286. 13.Hung, C. J., and Dong C. M., 1999. “Wave deformation and vortex generation in water waves propagating over a submerged dike,” Coastal Engineering, Vol. 37, pp. 123~148. 14.Kravchenko, A. G., Moin, P. 2000. “Numerical studies of flow over a circular cylinder at Re = 3900,” Physics of Fluids, Vol. 12, pp. 403~417. 15.Lin, C., Wei, D. J., Yen, G. H., 1998. “Investigation of vortex structures in the mixing layers of axisymmetric jets.” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 10, pp. 79~92. 16.Lin, C., Chang, S. C., Ho, T.-C., Hsieh, S.-C. and Chang, K. A. 2004. “Vortex shedding process in a solitary water wave passing over a submerged rectangular dike.” Proceedings of 11th International Symposium on Flow Visulization, Notre Dame, Indiana, U.S.A., Paper No. 098. 17.Lin, C., Ho, T.-C., Chang, S. C., Hsieh, S.-C. and Chang, K. A. 2005. “Vortex shedding induced by a solitary wave propagating over a submerged vertical plate.” International Journal of Heat and Fluid Flow, Vol. 26, pp. 894-904. 18.Lin, C., Chang, S. C., Chang, K. A., 2006. “Laboratory observation of a solitary wave propagating over a submerged rectangular dike.” Journal of Engineering Mechanics, ASCE, Vol. 132, pp. 545-554. 19.Lin, C., Hwung, W. Y., Hsieh, S. C., Chang, K. A., 2007. “Experimental study on mean velocity characteristics of flow over vertical drop.” Journal of Hydraulic Research, IAHR, Vol. 45, No. 1, pp. 33~42. 20.Lin, P., 2004. “A numerical study of solitary wave interaction with rectangular obstacles.” Coastal Engineering, Vol. 51, pp. 35~51. 21.Losada, M., Vidal, A.C., and Medina, R., 1989. “Experimental study of the evolution of a solitary wave at an abrupt junction,” J. Geophys. Res., No. 94, pp. 557~556. 22.Losada, I. J., Losada, M. A., and Martin, F. L., 1995. “Experimental study of wave-induced flow in a porous structure,” Coastal Engineering, Vol. 26, pp. 77~98. 23.Losada, I. J., Patterson, M. D., and Losada, M. A., 1997. “Harmonic generation past a submerged porous step,” Coastal Engineering, Vol. 31, pp. 281~304. 24.Madsen, O. S. and Mei C. C., 1969. “The transformation of solitary wave over an uneven bottom,” J. Fluid Mech. Vol. 39, pp. 781~791. 25.McCowan, J. 1891. “On the highest wave of permanent type.” London, Edinburgh, and Dublin Phil. Mag. And J. Sci., Vol.38, 1894. 26.Mei, C. C., Black, J. L., 1969. “Scattering of surface waves by rectangular obstacles in waters of finite depth.” Journal of Fluid Mechanics Vol. 38, pp. 499~511. 27.Ono, M., Deguchi, I., Kubota, S., 1997. “Flow pattern around bottom structure in waves.” Proceedings of Civil Engineering in the Ocean 15, pp. 895~900. (In Japanese) 28.Otta, A., Svendsen I. A., and Geilli S. T., 1992. “The breaking and run-up of solitary wave on beaches,” Proc. 23rd Int. Conf. Coastal Engineering, ASCE, pp. 1461~1474. 29.Rajaratnam, N., 1976. Turbulent jets. Elsevier Scientific Publishing Company, Amsterdam. 30.Rey, V., Belzons M. and Guazzelli E. 1992. “Propagation of surface gravity waves over a rectangular submerged bar,” J. Fluid Mech., Vol. 235, pp. 453~479. 31.Russell J. Scott. 1844. “ Report on waves,” Fourteenth Meeting of the British Association for the Advancement of Science. 32.Seabra-Santos, F. J., Renouard D. P., and Temperville A. M., 1987. “Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle,” J. Fluid Mech., Vol. 176, pp. 117~134. 33.Tang C. J. and Chang J. H., 1998. “Flow separation during solitary wave passing over submerged obstacle,” J. Hydraul. Eng., Vol. 124, pp. 742~749. 34.Ting, F. C.K. and Kim Y. K, 1994. “Vortex generation in water waves propagating over a submerged obstacle”, Coastal Engineering, Vol. 31,pp. 23~49. 35.Ting, F. C. K. and Kim Y. K. 1994. “Vortex generation in water waves propagation over a submerged obstacle,” Coastal Engineering, Vol. 24, pp. 23~49. 36.Zhuang, F., Lee, J. J., 1996. “A viscous rotational model for wave overtopping over marine structure.” Proceedings of the 25th International Conference on Coastal Engineering, Orlando, Florida, pp. 2178~2191. 37.林呈、何宗浚、張淞傑、張廣安:“孤立波通過直立平板所產生之流場特性探討”,第27屆海洋工程研討會論文集,2005,pp. 361~368。 38.張興漢、黃清哲、張舜鈞、丁舜臣、黃煌輝: “孤立波與透水潛堤之互制作用” ,2002中國土木水利工程學刊第十四卷,第三期,第503~514頁。 39.張淞傑:應用流場可視化與PIV技術於孤立波通過潛堤周邊渦流流場之研究,國立中興大學土木工程研究所碩士論文,2004。 40.張志華、唐啟釗:“模擬海嘯行經海溝現象之研究”,2005電子計算機於土木水利工程應用研討會論文集,pp. 136~140。 41.張錦鑲:應用流場可視化與PIV系統於孤立波通過對稱穴槽之渦流特性研究,國立中興大學土木工程研究所碩士論文,2006。 42.謝世圳、林呈、張育豪、張瑜文:“應用PIV探討單圓柱急加速起動之尾流流場特性”,第27屆海洋工程研討會論文集,2005,pp. 187~194。 43.謝世圳:“單圓柱尾流流場特性之實驗研究”, 國立中興大學土木工程研究所博士論文(初稿),2007。
摘要: 
本研究是利用高速攝影機配合影像處理及高速PIV計算技術,輔以流場可視化之定性觀測方法,探討孤立波通過潛沒圓柱之週邊流場特性。文中首先針孤立波通過不同間距圓柱之流場型態進行定性的觀察,再根據觀察結果將其型態分類。而後選擇G/D = 1.5 ~ 5較為相似的型態進行更進一步的定性觀察及定量量測,再根據量測結果對渦流發展過程之速度向量分佈、渦心移動特性、渦度分佈及渦流環流量Γ之變化情形進行詳細之探討。
在定性方面,當圓柱接近底床時G/D = 0 ~ 1.5,流場特性與潛堤之流場較為相似。當圓柱離開底床並且未接近水面的範圍,其流場型態相當近似。孤立波通過圓柱後尾端產生兩渦流且不對稱,孤立波遠離後兩渦流斜朝向底板移動,並往波浪入射方向移動。當圓柱接近水面時,渦流流場與G/D = 1.5 ~ 5型態稍微不同,其渦流水平往波浪入射方向移動。
針對G/D = 1.5 ~ 5時之流場進行定量量測,發現孤立波通過位於不同間距圓柱時,其渦流環流量約相同,針對 同一間距條件其下渦流之環流量絕對值皆大於上渦流。在G/D = 1.5 ~ 5時渦流渦心移動軌跡有一近似走向。

The characteristics of the vortices induced by a solitary wave propagating over a submerged 2-D circular cylinder were investigated experimentally. The wave height (H) is 1.1 cm, and the diameter of the cylinder (D) is 1 cm in the water depth of h = 7 cm. Particle image velocimetry (PIV) and flow visualization techniques were used for the experiments. PIV was based on phantom camera and Argon laser system. Particle trajectory photography was used to observe the flow patterns. The vortex shedding processes were investigated for different gap ratios (G/D) using the qualitative visualization technique and PIV.
For different G/D, the flow patterns can be classified as three major flow patterns. For G/D = 0 ~ 1.5, the characteristics of flow field are similar to that behind a submerged dike. For G/D = 1.5 ~ 5, the vortex shedding processes are nearly the same. As a solitary wave passes, two asymmetric vortices are produced behind the cylinder. As the wave moves away from the position over the cylinder, the vortices move toward the bottom boundary. For G/D = 5 ~ 6, the vortex shedding processes are different from those in G/D = 1.5 ~ 5. The vortices move horizontally toward the incoming direction of the solitary wave.
For G/D = 1.5 ~ 5, it is found that the flow patterns are nearly the same. The flow patterns were also measured quantitatively using PIV. The characteristics of velocity distribution, trajectories of vortex core and vortex circulation were analyzed. The circulation of the down vortex is always larger than that of the top vortex at each non-dimensional time (T = -5 ~3). The similarity profiles for the variation of the non-dimensional vortex strength are obtained in this paper.
URI: http://hdl.handle.net/11455/15646
其他識別: U0005-2708200720194600
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.