Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15660
標題: 斜坡砂質海床上波浪變形之數值解析
Numerical Analysis on Wave Transformation over Slope Sandy Bottom
作者: 謝明穎
Hsieh, Ming-Ying
關鍵字: Sandy;砂質;Slope;Wave Transformation;斜坡;波浪變形
出版社: 土木工程學系所
引用: 1. Biot, M. A. (1941) “General theory of three-dimensional consolidation,”Journal of the Applied Physics, Vol. 12, No. 2, pp.155-164. 2. Copeland, G. J. M (1985) “Mile-Slope wave equation,”Coastal Engineering, Vol. 9, pp.125-149. 3. Cruz, E. C., M. Isobe and C. H. Song. (1993) “Boussinesq Equations for Wave Transformation on Porous Seabed of Infinite Thickness,”Coastal Engineering, Vol. 30, pp.125-156. 4. Hunt, J. N. (1959)“On the Damping of Gravity Wave Propagated Over a Permeable Surface,”J .Geophys Res, Vol. 64, No. 4, pp.437-442. 5. Hsu, J. R. C., Jeng, D. S. and Tasi, C. P. (1993)“Short-Crested Wave-Induced Soil Response in a Porous Seabed of Infinite Thickness,”International Journal for Numerical and Analytical Methods in G’eomechanics, Vol. 17, No. 8, pp.533-576. 6. Madsen, O. S. (1974)“Wave-Induced Pore Pressures and Effective Stresses in a Porous Bad,”Gotechnique, Vol. 28, pp.377-393. 7. Mase, H. and Iwagaki, Y. (1982)“Wave Height Distribution and Wave Grouping in the Surfzone,”Proceedings of the Eighteenth International Conference on Coastal Engineering, ASCE, pp.58-76. 8. Nagayama, S. (1983)“Study on the Change of Wave Height and Energy in the Surfzone,”Bachelor theris, Yokohama National University, Japan. 9. Putnam, J. A. and M. A. (1949)“Loss of Wave Energy due to Percolation in a Permeable Sea Bottom,”Transactions, American Geophysical Union, Vol. 30, No. 3, pp.349-356. 10. Shuto, M. (1974)“Nonlinear Long Waves in a Channel of Variable Section,”Coastal Engineering in Japan, Vol. 17, pp.1-12. 11. Sollitt, C. K. and R. H. Cross, (1972)“Wave Transmission through Permeable Breakwaters,”Proce. 13th Conf. Coastal Eng, ASCE, Vol.Ⅲ, pp.1827-1846. 12. Tsai, C. P., Chen, H. B. and Hsu , J. R. C. (2001)“Calculations of Wave Transformation Across the Surf zone,”Ocean Engineering, Vol. 28, pp.941-955. 13. Tsai, C. P., Chen, H. B. and Lee, G. C. (2006)“Wave Transformation over Submerged Permeable Breakwater on Porous Bottom,”Oceanl Engineering , Vol. 33, pp.1623-1643. 14. Ward, J. C. (1964) “Turbulent Flow in Porous Media,” Proc. ASCE , J. Hyd. Div, Vol. 90, No. HY 5, pp.1-12. 15. Watanabe, A. and K. Maruyama, (1986)“Numerical Modeling of Nerashore Wave Filed under Combined Refraction Diffraction and Breaking,”Coastal Engineering in Japan, Vol. 29, pp.19-39. 16. 黃良雄 (1995),「碎波前波浪與底床變化特性之研究(1)」,國科會專題計畫成果報告,計畫編號NSC84-2611-E-002-006,第 90頁。 17. 藍元志、李兆芳 (1998),「波浪通過透水彈性底床之互制作用」,中華民國第二十屆海洋工程研討會論文集,第 203-210頁。 18. 蔡清標、陳鴻彬 (2002),「斜坡孔隙彈性介質上波浪變形之研究」,中華民國第二十四屆海洋工程研討會論文集,第 641-647頁。 19. 林銘崇、丁肇隆、黃遠芳、許朝敏 (2003),「應用Boussinesq方程式模擬透水底床之波浪變形」,中華民國第二十六屆海洋工程研討會論文集,第 34-41頁。
摘要: 
本研究在解析波浪通過斜坡砂質底床之波浪變形特性,主要探討砂質底床特性、底床坡度與改變土壤剪力模數、土壤滲透率等特性參數下,對斜坡砂質海床上波浪衰減特性之影響。而理論控制方程式引用蔡與陳(2002) 推導的適用於孔隙彈性介質上之時間相關緩坡方程式,同時考慮Tsai et al. (2001)所提出的非線性淺化能量因子;該緩坡方程式,包含孔隙彈性介質中孔隙率、土壤剪力模數及土壤滲透率等參數之特性,但亦可蛻化為剛性不透水底床之情況。研究中比較砂質底床與剛性不透水底床下波浪變形之特性,數值解析結果顯示在粗砂底床下,波浪衰減較細砂明顯。而改變土壤剪力模數時其值越大,對波浪之衰減越明顯。另外較大之土壤滲透率時,對波浪之衰減亦越大。

The purpose of this paper is to investigate the wave transformation over slope sandy bottom. It mainly focuses on the effect of sandy seabed, slope of seabed, soil shear modulus, soil permeability, to the wave damping on the slope sandy bottom. The governing equations in this study are derived from Tsai and Chen (2002). They set a suitable time-dependent mild-slope equation for wave propagating over a poro-elastic seabed including properties of porosity, shear modulus, permeability, of the soil. In addition, this paper also considers the nonlinear shoaling correction coefficient proposed by Tsai et al. (2001). The research compares first the wave deformation of sandy seabed and impermeable seabed. The numerical results indicate that the wave attenuation on the coarse sand seabed is more obvious than on the fine sand one. While changing the soil shear modulus, the wave damping is more obvious when the value of soil shear modulus is bigger. In addition, changing soil penetrance, its value is bigger when the wave attenuation is larger.
URI: http://hdl.handle.net/11455/15660
其他識別: U0005-2808200712260100
Appears in Collections:土木工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.