Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15696
標題: 考慮動態載重下多孔性土壤之有限元素法動態分析
Dynamic Analysis of Poroelastic Soil Medium Under Moving Loads by Finite Element Method
作者: 陳鈞彥
Chen, Chun-Yen
關鍵字: Dynamic;動態載重;Poroelastic Soil;Finite Element Method;多孔性土壤;有限元素法
出版社: 土木工程學系所
引用: 參 考 文 獻 1.Frba L. “Vibration of solids and structures under moving loads."Groningen: Noordhoff;1972. 2.Foda MA, Mei CC.”A boundary layer theory for rayleigh waves in a porous fluid-filled half-space”,Soil Dyn Earthquake Engng. 1983;2:62-5. 3.D. D Theodrakopoulos,2003, ” Dynamic analysis of a poroelastic half-plane soil medium under moving loads,”Soil Dynamics and Earthquake Engineering 23(2003)521-533. 4.Hardy MSA, Cebon D. Response of continuous pavements to moving dynamic loads. J Engng Mech, ASCE 1993;119:1762 – 80. 5.Huang MH, Thambiratnam DP. Deflection response of plate on Winkler foundation to moving accelerated loads. Engng Struct 2001; 23:1134 – 41. 6.Huang MH, Thambiratnam DP. Dynamic response of plates on elastic foundation to moving loads. J Engng Mech, ASCE 2002;128:1016 – 22. 7.Sun L. A closed-form solution of beam on viscoelastic subgrade subjected to moving loads. Comput Struct 2002;80:1 – 8. 8.Kononov AV, de Borst R. Instability analysis of vibrations of a uniformly moving mass in one and two-dimensional elastic systems. Eur J Mech A/Solids 2002;21:151 – 65. 9.Alabi B. A model for the problem of ground vibration induced by the wheels of a moving train. Appl Math Model 1989;13:710 –5. 10.Alabi B. A parametric study on some aspects of ground-borne vibrations due to rail traffic. J Sound Vibr 1992;153:77 –87. 11.Krylov VV. Generation of ground vibrations by superfast trains. Appl Acoust 1995;44:149 – 64. 12.Ganarante M, Sanders O. Response of a layered elastic medium to a moving strip load. Int J Numer Anal Meth Geomech 1996;20:191 – 208. 13.Jones DV, Laghrouche O, Le Houe´dec D, Petyt M. Ground vibration in the vicinity of a rectangular load acting on a viscoelastic layer over a rigid foundation. J Sound Vibr 1997;203(2):307 – 19 14.Sheng X, Jones CJC, Petyt M. Ground vibration generated by a load moving on a railway track. J Sound Vibr 1999;228:129 – 56. 15.Grundmann H, Lieb M, Trommer E. The response of a layered half- space to traffic loads moving along its surface. Arch Appl Mech 1999; 69:55 – 67. 16.Lefeuve-Mesgouez G, Peplow A, Le Houe´dec D. Ground vibration in the vicinity of a high-speed moving harmonic strip load. J Sound Vibr 2000;231(5):1289 – 309. 17.Lefeuve-Mesgouez G, Peplow A, Le Houe´dec D. Surface vibration due to a sequence of high speed moving harmonic rectangular loads. Soil Dyn Earthquake Engng 2002;22:459 – 73. 18.Hung HH, Yang YB. Elastic waves in visco-elastic half-space generated by various vehicle loads. Soil Dyn Earthquake Engng 2001;21:1 – 17. 19.Werkle H, Waas G. Analysis of ground motion caused by propagating air pressure waves. Soil Dyn Earthquake Engng 1987;6(4):194 – 202. 20.Krenk S, Kellezi L, Nielsen SRK, Kirkegaard PH. Finite elements and transmitting boundary conditions for moving loads. In: Fryba L, Naprstek, editors. Structural dynamics—EURODYN ’99. Rotterdam: Balkema; 1999. p. 447 – 52. 21.Ekevid T, Li MXD, Wiberg NE. Adaptive FEA of wave propagation induced by high-speed trains. Comput Struct 2001;79:2693 – 704. 22.Yang Y-B, Hung H-H. A 2.5 D. finite/infinite element approach for modeling visco-elastic bodies subjected to moving loads. Int J Numer Meth Engng 2001;51:1317 – 36. 23.De Barros FCP, Luco JE. Response of a layered visco-elastic half- space to a moving point load. Wave Motion 1994;19:189 – 210. 24.De Barros FCP, Luco JE. Stresses and displacements in a layered half- space for a moving line load. Appl Math Comput 1995;67:103 – 34. 25.Chouw N, Pflanz G. Reduction of structural vibrations due to moving load. In: Chouw N, Schmid G, editors. Wave. Rotterdam: Balkema; 2000. p. 251 – 68. 26.Hirose S. Boundary element modeling and analysis of moving loads in time and frequency domains. In: Chouw N, Schmid G, editors. Wave. Rotterdam: Balkema; 2000. p.71– 82. 27.Lombaert G, Degrande G. Experimental validation of a numerical prediction model for the free field traffic induced vibrations by in situ experiments. Soil Dyn Earthquake Engng 2001;21:485 – 97. 28.Rasmussen KM, Nielsen SRK, Kirkegaard PH. Boundary element method solution in the time domain for a moving time-dependent force. Comput Struct 2001;79:691 – 701. 29.Pan G, Atluri SN. Dynamic response of finite sized elastic runways subjected to moving loads: a coupled BEM/FEM approach. Int J Numer Meth Engng 1995;38:3143 – 66. 30.Andersen L, Nielsen SRK. Boundary element analysis of steady-state response of elastic half-space to a moving force on its surface. Engng Anal Bound Elements 2003;27:23 – 38. 31.Pan G, Okada H, Atluri SN. Nonlinear transient dynamic analysis of soil-pavement interaction under moving load: a coupled BEM/FEM approach. Engng Anal Bound Elements 1994;14:99 – 112. 32.Suiker ASJ, Chang CS, de Borst R, Esveld C. Surface waves in a stratified half-space with enhanced continuum properties. Part 1: Formulation of the boundary value problem Part 2: Analysis of the wave characteristics in regard to high-speed railway tracks. Eur J Mech A/Solids 1999;18:749 – 68. and p. 769 – 84. 33.Burke M, Kingsbury HB. Response of poroelastic layers to moving loads. Int J Solid Struct 1984;20(5):499 – 511. 34.Siddharthan R, Zafir Z, Norris GM. Moving load response of layered soil. Part I : Formulation; Part II: Verification and application. J Engng Mech, ASCE 1993 ;28: 597-631. 35.Zafir Z, Siddharthan R, Sebaaly PE. Dynamic pavement-strain histories from moving traffic load. J Transport Engng, ASCE 1994;120:821 – 42. 36.Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid. Part I:Low-frequency range;Part II:High-frequency range. J Acoust Soc Am 1956;28:168-91. 37.Mei CC, Foda MA. Wave-induced responses in a fluid-filled porous solid with a free surface-a boundary layer theory. 38.Jeng, D. S. and Lin, Y. S., 1996, ”Finite element model for water wave-soil interaction,” Soil Dynamics and Earthquake Engineering, Vol. 15, pp. 283-300. 39.Lin, Y. S. and Jeng, D. S., 1996, ”Response of Poro-elastic seabed to 3-d wave system: a finite element analysis,” Coastal Engineering in Japan, Vol. 39, No. 2, pp. 195-182. 40.Jeng, D. S. and Lin., Y. S., 1997, ”Non-linear wave-induced response of porous seabed: a finite element analysis,” International Journal for numerical and analytical Methods in Geomechanics, Vol. 21, pp. 15-42. 41.Lin, Y. S. and Jeng, D. S., 1997, ”The effects of variable permeability on the wave-induced seabed response,” Ocean Engineering Vol. 24, No. 7, pp. 623-643. 42.S. H . Ju.J .J Stone and Rowlands,1993”A New Symmetric Contact Element Stiffness Matrix For Frictional Contact Problems,” Computer & Structure Vol.54.No.2.pp.289-301. 43.張淇銘,1999,”波浪作用下土壤內埋管之有限元素分析模式”,碩士論文,國立中興大學土木工程研究所。 44.蔡坤峰,2002,”波浪-海底床-埋管交互作用機制之探討:三維有限元素分析模式”,碩士論文,國立中興大學土木工程研究所。 45.黃繼賢,2004,”慣性力對海浪與海底土壤交互作用影響之有限元素模式”,碩士論文,國立中興大學土木工程研究所。 46.黃吉廷,2005,”慣性力對波浪-海底床-埋管交互作用機制之有限元素模式”,碩士論文,國立中興大學土木工程研究所。 47.黃冠倫,2007,”考慮接觸效應之海底埋管有限元素分析”,碩士論文,國立中興大學土木工程研究所。
摘要: 
本論文主要的目的在建立移動式載重作用下,土壤內孔隙水壓之二維有限元素分析模式。此模式主要利用 Biot的動態壓密理論及彈性力學之力平衡方程式來控制,並考慮土壤之遲滯阻尼效應;再利用 Galerkin 法建立有限元素分析模式,以分析受移動載重作用後土壤之位移、應力及孔隙水壓力。

本文中將先討論土壤內有無考慮孔隙水壓作用,為定點衝擊式載重與移動式載重作用下,造成土壤間各種不同的應力和位移分佈之差異性。文中針對不同的土壤參數,包括:剪力模數(G值)、阻尼比(δ值)、滲流係數(K值),在土壤之間孔隙水壓力、應力和位移分佈所造成之變化。經由本文中所建立之模式及分析結果,希望可供工程界在進行設計時做為參考。

This study aims to build the two-dimensional finite element model for pore water pressure under the moving loads. The formulation is controlled by Biot consolidation theory, Elasticity Mechanics of equilibrium equations, and elastic stress and strain linear relation; while the finite element model is established through the method of Galerkin, which analyzes the stress variations of the poroelastic solid. The solid is considered to be poroelastic in this paper.


The variations of soil stresses and the differentiations of the displacement will be first discussed. Whether the solid has pore water pressure or not, and whether the loads are moved will cause the diversities. The different the soil parameters, including shear modulus (G), damping ratio (δ), and seepage coefficient (K), makes the different degrees of variations soil stress and the displacement. This phenomenon will further covered in the study with the loading effect. Through the results of building and analyzing the model in this thesis, we hope it would offer the reference for engineering field when designing.
URI: http://hdl.handle.net/11455/15696
其他識別: U0005-0307200816112600
Appears in Collections:土木工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.