Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15757
標題: 不同養護方式與時間對高溫作用混凝土波速與抗壓強度之影響
Influence of Different Post Fire Curing Conditions on UPV and Compressive Strength of Concrete
作者: 賴竣霆
Lai, Chun-Ting
關鍵字: Influence of Different Post Fire Curing Conditions;高溫作用混凝土
出版社: 土木工程學系所
引用: 參考文獻 1. 黃兆龍,”高等混凝土技術”,國立台灣工業科技學院教案, 1992。 2. C. Zermin, Wolfgang, “Cement Chemistry and Physics for Civil Engineers”,1980。 3. Sidney Mindess, J.Francis Young, “Concrete”, 1981。 4. 張正平,”高強度混凝土受高溫後之性質”,國立交通大學碩士論文,1996。 5. 沈進發, 陳舜田, 林尚賢, “以X射線繞射試驗法推測混凝土受火害程度之研究”, 國立台灣工業技術學院碩士論文, 1991。 6. 張郁慧,”火害延時對混凝土材料性質之影響”, 國立台灣工業技術學院碩士論文,1993。 7. 襲人俠, “水泥化學概論”, 台灣區水泥工業同業公會, 1980。 8. Mohamedbhai,G.T.G.,”Effect of exposure time and rates of heating and cooling on residual strength of heated concrete”,Magazine of Concrete Research,vol.38,No.136,September 1986,pp.151-158。 9. Chi-Sun Poon, Salman Azhar, Mike Anson, Yuk-Lung Wong,”Strength and durability recovery of fire-damged concrete after post-fire-curing.”Cement and Concrete Research, Volume: 31, Issue: 9, September, 2001, pp. 1307-1318。 10. 黃兆龍,”混凝土性質與行為”,詹氏書局,初版一刷,1997。 11. 張范宏,「以縱波波速評估高性能混凝土強度之研究」,國立中興大學,碩士論文,民國85年6月。 12. Y. N. Chan﹐G. F. Peng and M. Anson﹐1999﹐“Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures” ﹐Cement and Concrete Composites ﹐Vol. 21﹐p23~27﹐Elsevier Science Limited﹐Britain。 13. 楊炫智-非破壞檢測方法應用於高溫作用後混凝土結構之損害評估-博士論文2008 14. 劉建佑,「非破壞檢測之波速量測法應用於火害混凝土坡速與強度關係之探討」,國立中興大學,碩士論文,民國93年。 15. Sammy Yim Nin Chan, Xin Luo, Wei Sun, “Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete”, Construction and Building Materials, Vol.14,2000,pp.261-266 16. A.Y.Nassif, S. Rigden, E. Burley, “The effects of rapid cooling by water quenching on the stiffness properties of fire-damage concrete”, Magazine of Concrete Research, Vol. 51, 1999, pp255-261 17. Chi-Sun Poon, Salman Azhar, Mike Anson, Yuk-Lung Wong, “Strength and durability recovery of fire-damage concrete after post-fire-curing”,Cement and Concrete Research, Vol. 31, 2001, pp.1307-1317 18. Endell, K. “Influence of High Temperatures on Hardened Cement , Aggregate , and Concrete ( Uber die Einwirkung Hoher Temperaturen auf erharteten Zement , Zuschlagstoffe und Beton )” Zement ( Berlin ) , No.45 , pp.823-929 , 1926。 19. Harada T. et al. “Strength,elasticity and thermal properties of concrete subjected to elevated temperatures”,ACI Special publication ,SP 34,Detroit, 1972。 20. Abrams M.S., ”Compressive Strength of Concrete, at Temperatures to 1600℉”, Temperature and Concrete, ACI publication SP25, 1968。 21. H.L.Malhotra,“Design of Fire-ResistingStructures”,1976。 22. Lea, F.M., “The Chemistry of Cement and Concrete”, Edward Arnold Ltd, London, 1980。 23. Bye, G.C., “Portland Cement-Composition, Production and Properties”, Published on Behalf of the institute of Ceramics, New York, 1983。 24. Barnes p., “Structure and Performance of Cement”, Applied Science Publishers, N.J., 1983。 25. Metha P.K., “Concrete-Structure, Material, and Properties”, Prentice Hall, Englewood Cliffs, N.J., 1986。 26. Sansalone, M. and Carino, N. J., “Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves,” NBSIR86-3452, National Bureau of Standards, Gaithersburg, Maryland, pp.222, Sept 1986。 27. Carino, N. J., Sansalone, M. and Hsu, N. N., “Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Waveforms,” International Advances in Nondestructive Testing, 12th Edition, W.J. McGonnagle, Ed., Gordon & Breach Science Publishers, New York, pp.117-146, 1986。 28. ACI 216R-81,”Guide for Determining the Fire Endurance of Concrete Elements”, 1987。 29. Sansalone, M. and Carino, N.J., “Laboratory and Field Study of the Impact-Echo Method for Flaw Detection in Concrete,” in Nondestructive Testing of Concrete, Special Publication of the American Concrete Institute, pp.1-20, 1988。 30. Castillo Carlos and Durrani A. J. ,”Effect of Transient High Temperature on High-Strength Concrete”, ACI Materials Journal ,Title no. 87-M7 ,Janurnal- February 1990。 31. G.A. Khoury, “ Compressive Strength of Concrete at High temperatures: a reassessment”, Magazine of Concrete Reseach, 1992, pp.291-309。 32. Sarshar, R. and Khoury, G. A. ,”Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures”, Magazine of Concrete Research,vol.45,No.162,Mar. 1993,pp. 51-61。 33. ASTM ,〝Standard Test Methods for Fire Test of Building Construction and Materials〞,ASTM Committee E119-98,American Society for Testing and Materials,April 1998。 34. Pessiki, P. S. and Carino, N. J., “Setting Time and Strength of Concrete Using the Impact-Echo Method,” ACI Materials Journal 85, pp.389-399, September-October 1988。 35. Chi-Sun Poon, Salman Azhar, Mike Anson, Yuk-Lung Wong,” Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures”, Cement and Concrete Research ,Volume: 31, Issue: 9, September, 2001, pp. 1291-1300。 36. Georges G. Carette and V. Mohan Malhotra ,”Performance of Dolostone an Limestone Concrete at Sustained High Temperatures”,Temperature Effects on Concrete ,ASTM Special Technical Publication 858,pp38-67。 37. Karim W. Nasser and Madhusudan Chakraborty , ”Temperature Effects on Strength and Elasticity of Concrete Containing Admixtures”, Temperature Effects on Concrete ,ASTM Special Technical Publication 858,pp118-133。 38. Nikolai G. Zoldners , “Thermal Properties of Concrete Under Sustained Elevated Temperatures” ,Temperature and Concrete , Publication SP 25 , PP.1-31。 39. Richard D. Gaynor , Richard G. Meininger and Tark S. Khan, ”Effects of Temperature and Delivery Time on Concrete Proportions ” , Temperature Effects on Concrete , ASTM Special Technical Publication 858,pp68-87。 40. 許修豪,” 不同冷卻再養護方式對混凝土承受高溫後殘餘強度及恢復狀況之影響”,國立交通大學碩士論文,1998。 41. 卓信璁,” 利用敲擊回音法量測鋼筋混凝土版受高溫後之裂縫深度”, 國立交通大學碩士論文,1999。 42. 卓信璁,” 利用敲擊回音法量測鋼筋混凝土版受高溫後之裂縫深度”, 國立交通大學碩士論文,1999。 43. 吳敏洽,「受熱後混凝土內部之力學性質變化」,國立中興大學,碩士論文,民國76年。 44. 鄭錦銅,「混凝土在高溫下之熱傳及微觀結構變化」,國立中興大學,碩士論文,民國76年。 45. 楊旻森, “壓力作用下混凝土材料受火害後之行為”, 國立台灣工業技術學院碩士論文, 1990。 46. 沈政南,”化學摻料對混凝土耐火性能影響之研究”, 國立台灣工業技術學院碩士論文,1994。 47. 嚴順然,” 火害後再水化對高性能混凝土性質之影響”,國立台灣科技大學碩士論文,1995。 48. 顏聰,“混凝土火害後之材料性質” ,,混凝土結構火害研討會, 國立中興大學土木學系與國立台灣科技大學營建工程技術系,民國86 年12 月。 49. 王俊文,”混凝土受高溫而強度折減之分析”,國立雲林科技大學碩士論文,1999。 50. 顏聰,「構造物高溫作用後藉超音波評估其混凝土受損程度之研究」,土木水利,第九卷,第三期,民國71年11月。 51. 沈進發,張顯宗,黃自立,陳舜田,「X光繞射分析作用於檢測建物受火害程度之探討」,第六屆非破壞檢測技術研討會論文集,104~118頁,台北,台灣,民國77年。 52. 林宜清,陳真芳,蔡聖德,「混凝土構件幾何形狀對波速之影響」,興大工程學報,第五期,27~39頁,民國83年。 53. 高金盛,沈進發,陳舜田,「混凝土火害溫度之綜合評估」,第二屆結構工程研討會論文集(I),49~59頁,南投日月潭,台灣,民國83年。 54. 蔡佐良,1998,“火害延時與溫度對混凝土強度之綜合影響──溫時分析法”中華民國第四屆結構工程研討會論文集(一),頁547~554,台北。 55. 林炳炎, ”火、火、火混凝土的耐火性能及熱性質” ,營建世界, 1986 。 56. 黃兆龍, 蔡明谷, “水密性, 耐火性, 抗蝕性, 耐疲勞其他耐火性”, 營建簡訊98。
摘要: 
論文主要目的為針對混凝土之水灰比0.6、作用高溫600℃、高溫延時2小時下,規劃高溫作用後不同養護方式及不同水中養護時間作為變化參數,以圓柱試體各別量測高溫作用後混凝土應力波速度與抗壓強度,探討二者間關聯性,期能藉由試驗規劃建立高溫作用後混凝土應力波速與抗壓強度之關係,作為日後火害現場進行非破壞性檢測及相關研究之參考依據。
根據試驗結果,水淬養護與水中養護這兩種養護方式,雖然皆經過泡水養護程序且泡水養護時間相同,但由於施以泡水養護時間點不同,導致兩種不同殘餘強度回復變化,顯然以水中養護方式可獲得較高殘餘抗壓強度比。研究結果顯示以超音波法之殘餘波速比推估所對應之殘餘強度比,當水淬養護之泡水養護時間低於3小時(180分鐘)時,或水中養護之泡水養護時間未達60分鐘時,可以採用空氣養護建立之關係曲線,其預估公式預測結果較為低估且誤差皆在15%之內;當水淬養護之泡水養護時間超過72小時或水中養護之泡水養護時間60分鐘以上時,可以採用水中養護建立之關係曲線,其預估公式預測結果較為低估且誤差皆為10%之內。

The objective of this thesis is to investigate the relationship between the ultrasonic pulse velocity (UPV) and the residual strength of concrete subjected to a high temperature of 600 ℃ for 2 h with different post-fire-curing conditions。 The cylindrical specimens were made of concrete with a water cement ratio of 0.6。 The specimens were heated in an electric furnace up to 600 ℃ for 2 h。 After being exposed to the high temperature,the specimens were quenched with water and kept in water for cure; the specimens were referred to quenching specimens。 For comparison, the heated specimens were cooled down in the ambient air for 24 h and then cured in water; the specimens were referred to post-fire-curing specimens。 The main parameter for these two kinds of curing conditions is the submerged duration。
Experimental results show that the residual strength ratio of quenching specimens is lower than that of post-fire-curing specimens for the same submerged duration。 Experimental results also show that the established residual UPV-strength ratio relationship curve for air-curing concrete is suitable for using the residual UPV ratio to estimate the residual strength ratio for quenching concrete with the submerged time less than 180 minutes and for post-fire-curing concrete with the submerged time less than 60 minutes。 The residual strength ratio is underestimated and the error is within 15%。 In addition,the UPV-strength relationship curve for water curing concrete can be used for quenching concrete with the submerged time over 72 h and for post-fire-curing concrete with the submerged time over 60 minutes。 The residual strength ratio is also underestimated and the error is within 10%。
URI: http://hdl.handle.net/11455/15757
其他識別: U0005-1408200814080300
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.