Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15776
標題: 三維雙方柱剛性氣彈模型實驗研究
Experimental Study of Three-dimensional Dual Square Prisms Based on a Rigid-Aeroelastic-Model Approach
作者: 許睿顥
Hsu, Rui-Hao
關鍵字: wind tunnel;風洞實驗;ridge aeroelastic model;high-rise building;剛性氣彈模型;氣動力阻尼;高層建築
出版社: 土木工程學系所
引用: 1. Cermak, J. E., Sandbone, V. A., Plate, E. J., Binder, G. H., Chuang, H., Meroney, R.N., and Ito, S., “Simulation of Atmospheric Motion by Wind Tunnel Flow,“ Report to Army Under Contract DA-AMC-28-043-G20, Colorado State University, 1966. 2. Cheng, C.M., Lu, P.C. and Tsai, M.S., “Acrosswind aerodynamic damping of isolated square-shaped buildings”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, pp. 1743–1756 (2002). 3. Davenport, A. G., Inst. Civil Eng. Paper No.6480, (August, 1961) pp. 449-472. 4. Hayashida, H., Mataki, Y. and Iwsas, Y., “Aerodynamic Damping Effects of Tall Building for a Vortex Induced Vibration,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 41-44, pp. 1973-1983, 1992. 5. Hunt﹐A.﹐”Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 10, pp.137-163, 1982. 6. Kawai, H., “Vortex Induced Vibration of Tall Buildings”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 41-44, pp.117-128, 1992. 7. Kawai, H., “Effect of Angle of Attack on Vortex Induced Vibration and Galloping of Tall Buildings in Smooth and Turbulent Boundary Layer Flows”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 54/55, pp.125-132 (1995). 8. Kwok, K.C.S. and Melbourne, W.H., “Wind-induced Lock-in Excitation of Tall Structures,” Journal of the Structural Division, Vol. l07(ST1), pp. 57-72, 1981 9. Matsumoto, T., “On the Across-wind Oscillation of Tall Buildings,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 24, pp. 69-85, 1986. 10. Nakamura, Y. and Ohya, Y., “The Effects of Turbulence on the Mean Flow past Two Dimensional Rectangular Cylinders,” Journal of Fluid Mechanics, Vol. 149, pp. 255-273, 1984. 11. Simiu, E. and Scanlan, R.H., Wind Effect on Structures, John Wiley & Sons, New York, 1986. 12. Steckley, A., Motion-Induced Wind Force on Chimneys and Tall Buildings, Ph.D. thesis, University of West Ontario, 1989. 13. Surry, D. and Djakovich, D., “Fluctuating Pressures on Models of Tall Buildings,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 58, pp. 81-112, 1995. 14. Synder, W. H., “Similarity Criteria for the Application of Fluid Models to the Study of Air Pollution Meteorology,” Boundary Layer Meteorology, Vol. 3, pp. 113-134, 1972. 15. Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge University Press, 1956. 16. Vickery, B.J. and Steckley, A., “Aerodynamic Damping and Vortex Excitation on an Oscillating Prism in Turbulent Shear Flow,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, pp, 121-140, 1993 17. Vickery, B. J. and Cook, A.W., “Lift or Across-wind Response of Tapered Stacks”, Journal of Structure Division, ASCE, Vol. 98(ST1), pp. 18. 林世權。風攻角和紊流場對長跨徑橋樑抖振之影響,淡江大學土木工程研究所碩士論文,民國84年。 19. 林群凱。氣動力阻尼對結構受風力反應之影響。淡江大學土木工程研究所碩士論文,民國83年6月。 20. 建築物耐風設計規範與解說,內政部(民國96年)。 21. 陳若華;鄭啟明;盧博堅。「高層建築物與邊界層流場之氣動力互制現象」,中國土木水利工程學刊第九卷第二期:頁271-279(民國86年)。 22. 蔡明樹。高層建築氣彈力現象之風洞研究。淡江大學土木工程研究所碩士論文,民國85年7月。
摘要: 
本實驗於內政部建築研究所風洞實驗室進行,來流為開闊地況之邊界層剖面。雙方柱模型高寬比均為7之方形柱體,採用前後排列方式進行。上游結構為固定柱,下游為氣動模型以及剛性氣彈模型。實驗中以三種Scr數探討質量-阻尼對於柱體氣動穩定狀況之影響。研究中發現,單柱氣動阻尼、尖峰因子結果與預測式呈現相同趨勢,且氣動模型結果整體趨勢亦符合氣彈模型結果。當雙柱間距比為3時,後柱順橫風向反應均方根值為最小,且臨界約化風速與間距比成反比,兩柱體越接近,其臨界約化風速越高。而兩柱距離越遠,前柱對後柱影響越小,而後柱與單柱受風反應特性越接近。雙柱排列之位置影響後柱穩定之狀態,Scr之大小則關係著位移反應之大小。

The experiments were conducted in wind tunnel laboratory of ABRI(short in architecture and building research institute ministry of the interior), the boundary layer of incoming flow is open terrain. Both buildings are square cylinders with aspect ratio equal to 7, the tendency arrangement is adopted. The upstream model is fixed, varying the mass-damp ratio of aerorlastic model at downstream. In this research, the results show the same tendency as predict formulas of aerodynamic damping and peak factor. The distance ratio equal 3, the along and across response are lower then others. When the distance of twin prism is decrease, the critical velocity is trend to increase.
URI: http://hdl.handle.net/11455/15776
其他識別: U0005-1908200816352000
Appears in Collections:土木工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.