Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/15848
標題: 視窗化應用於倒V堰型出流口滯洪池設計之研究
Windows - Based Application on the Design of Detention Pond with Inverted V-notch Outlet
作者: 林宛瑩
Lin, Wan-Ying
關鍵字: detention pond;滯洪池;windows-based;inverted V-notch weir outlets;視窗化;倒V堰型出流口
出版社: 土木工程學系所
引用: 1. 行政院農業委員會 (2003)「水土保持技術規範」,第119-127頁。 2. 江昇峰 (2002)「滯洪池設計視窗化之研發與應用」,中興大學土木工程學系,碩士論文。 3. 吳坤哲 (2005)「Sutro堰型出流口滯洪池之視窗化設計 」,中興大學土木工程學系,碩士論文。 4. 陳正炎、吳坤哲 (2004)「等腰梯形入流歷線滯洪水理特性之試驗研究」,中華水土保持學報,35卷3期,第241-249頁 。 5. 林永森 (1998)「Visual Basic 6 視窗程式設計經典實務篇」。 6. 范世億、張榮毅、康嘉翔、張幀禎、陳正炎 (2007)「倒V堰型出流口滯洪池洪峰消減之探討」,第十六屆水利工程研討會,第46-52頁。 7. 洪耀明、陳正炎 (2003)「小集水區滯洪容積計算公式之研究」,中華水土保持學報,34卷2期,第129-139頁。 8. 洪耀明、陳正炎 (2005)「短延時暴雨下滯洪池水文演算之試驗與數值模擬」,中國土木水利工程學刊,17卷1期,第141-150頁。 9. 洪耀明 (2002)「滯洪池水文演算模式之研究」,中興大學土木工程學系,博士論文。 10. 陳正炎、姚嘉耀、廖苑雅、林宛瑩 (2008)「梯形入流歷線滯洪容積之攝動解析研究」,台灣水利,56卷1期,第1-8頁。 11. 陳正炎、康嘉翔 (2006)「Sutro堰型出流口滯洪池之視窗化設計-以三角形入流歷線為例」,台灣水利,54卷2期,第62-70頁。 12. 陳正炎、張榮毅、黃思維 (2006)「線性堰型溢流口之滯洪池洪峰消減研究」,中國土木水利工程學刊,18卷2期,第233-244頁。 13. 陳正炎、江昇峰、陳宏宇 (2003)「視窗化應用於長延時降雨之滯洪池水理設計」,中華水土保持學報,34卷2期,第101-112頁。 14. 陳正炎、陳威甫、蔡宗翰 (2002)「視窗化滯洪設計之研究」,中華水土保持學報,33卷2期,第131-139頁。 15. 陳正炎、盧昭堯、洪耀明 (1999)「複合式出流口滯洪壩之滯洪特性研究」,中科院水利部陝西科技期刊水土保持研究,6卷3期,第46-54頁。 16. 康嘉翔 (2007)「倒V堰型出流口於滯洪池水理特性之研究」,中興大學土木工程學系,碩士論文。 17. 黃世陽、吳明哲 (2000)「Visual Basic 6.0 學習範本」。 18. 黃宏信 (1999)「底床坡度對複合式出流口滯洪壩水理特性之影響」,中興大學土木工程學系,碩士論文。 19. 劉希羿、廖苑雅、黃宏信、林宛瑩、陳正炎 (2007)「三角形入流歷線滯洪演算攝動解析之試驗驗證」,第十六屆水利工程研討會,第22-29頁。 20. Baker, D. L. (1979) “Size and Location of Detention Storage,” Journal of Water Resources Planning and Management, Vol. 113(1), pp. 15-18. 21. Butler, S. S. (1982) “Point-Slope Approach for Reservoir Flood Routing,” Journal of Hydraulic Division, ASCE, Vol. 106(6), pp. 1102-1113. 22. Chen, J. Y., Hong, Y. M. (1999) “Calculation of the Detention Volume Method of Detention Pond,” International Journal of Sediment Research, Vol. 14(4), pp. 51-60. 23. Horn, D. R. (1987) “Graphic Estimation of Peak Flow Reduction in Reservoirs,” Journal of Hydraulic Engineering, ASCE, Vol. 113(11), pp. 1441-1450. 24. Hong, Y. M., Yeh, N., and Chen, J. Y. (2006) “The Simplified Methods on Evaluating Detention Storage Volume for Small Catchment,” Ecological Engineering, Vol. 26(4), pp. 355-364. 25. Keshava Murthy, K., and Giridhar, D. P. (1989) “Inverted V-Notch:Practical Proportional Weir,” Journal of Irrigation and Drainage Engineering, ASCE, Vol. 115(6), pp. 1035-1050. 26. Keshava Murthy, K., and Giridhar, D. P. (1990) “Improved Inverted V-Notch on Chimney Weir,” Journal of Irrigation and Drainage Engineering, ASCE, Vol. 116(3), pp. 374-385. 27. Keshava Murthy, K., and Shesha Prakash, M. N. (1996) “On the Dual Head-Discharge Characteristics of a Modified Chimney Weir,” Journal De Recherches Hydrauliques, Vol. 34(4), pp. 502-517. 28. Mokus, D. C. (1957) “Use of Storm and Watershed Characteristics in Synthetic Hydrograph Analysis and Application,” U.S. Dept. of Agric. Soil Conservation Service, Washington. 29. Nash, J. E. (1959) “Systematic Determination of Unit Hydrograph Parameters,” J. of Geophys. Res., Vol. 64(1), pp. 111-115. 30. Subramanya, K. (1982) “Flow in Open Channel (Second Edition),” Tata McGraw-Hill Publishing Company Limited, pp. 323-326. 31. Steve, M. (2000) “Programming Applications with the Wireless Application Protocol: the Complete Developer’s Guide,” Published by John Wiley & Sons, Inc. 32. Troskolansky, A. T. (1960) “Hydrometry; Theory and Practice of Hydraulic Measurements,” Pergamon Press, N. Y.
摘要: 
台灣近年來由於過度開發山坡地的結果,導致上游集水區不透水面積增加、土壤入滲率減低,以及地表逕流量急驟增加,如遇洪水來臨之結果往往造成中下游水土災害。為使坡地開發對中下游地區之傷害減至最低,必須設置滯洪設施以有效遲滯洪峰到達時間與降低洪峰流量。對於如何在最小滯洪空間發揮最大滯洪功效,滯洪池出流口之型式設計將扮演舉足輕重之角色,而有別於矩形溢流口或孔口等出流口之特殊形式者如複合式出流口設計逐漸被探討。本文收集1994~2007年台灣地區現地滯洪池相關數據約840餘筆作為輔佐資料,藉以了解台灣地區滯洪設施設計情形。研究結果視窗化設計部份,利用倒V堰型出流口設計,以三角形、等腰梯形及伽瑪形等不同型態作為滯洪池入流歷線條件進行數值演算,經由視窗化軟體演算後,可將所求得滯洪容積尺寸大小、開口形式等數據呈現於表單中。並挑選出滯洪池現地案例,代入本視窗化設計軟體進行演算,能使滯洪池設計上更為便捷;另外,利用無線傳輸方式傳送至手機螢幕,當現地無法操作電腦時,亦可於最短時間獲得現場的設計資訊。

In recent years, due to the fact that Taiwan's hillsides have been over developed, impervious area in the upper part of the watershed has increased and the soil infiltration rate has reduced. Thus the surface runoff has increased rapidly. Therefore, a flood usually results in a disaster in middle reaches and downstream areas of the watershed. In order to reduce the damage to a minimum extent for these over exploited areas, flood detention facilities have to be established, which will delay the peak time and reduce the peak flow of a flood. In designing a most effective and economical detention pond, the type of detention outlets plays an important role. For example, compound outlets that are different from rectangular weirs or rectangular orifices have been proposed gradually. More than 840 sets of related data for detention ponds, which were built during 1994 to 2007 in Taiwan, have been collected. Hopefully, a better understanding for designing works of these detention ponds can be established. The research results show that a windows-based program has been developed for a detention pond with an inverted V-notch weir outlet. The inflow hydrographs include the triangular, the trapezoidal and the Gamma inflow hydrographs. After numerical computations, the designed size as well as the form of the outlet of a detention pond will show up in an easy reading table. Several case studies have been carried out through the designed windows-based program. For a place where a desktop computer is not available, the on-site design data can be wireless transferred via a cellular phone so that one can acquire the on-site information in a short time.
URI: http://hdl.handle.net/11455/15848
其他識別: U0005-2407200815555600
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.