Please use this identifier to cite or link to this item:
標題: 應用PIV於水躍速度場之分析探討
Study on Velocity Measurements of Hydraulic Jumps Using PIV Techniques
作者: 陳逸芬
Chen, I-Fen
關鍵字: Hydraulic jump;水躍
出版社: 土木工程學系所
引用: 1. Bakhmeteff, B. A., and Matzke, A. E. (1935). “The hydraulic jump in terms of dynamic similarity.” Transactions, ASCE, 101, 630-680. 2. Chanson, H., and Brattberg, T. (2000). “Experimental study of the air-water shear flow in a hydraulic jump.” International Journal of Multiphase Flow, 26, 583-607. 3. Chanson, H. (2007). “Hydraulic jumps: bubbles and bores.” Proceedings of the 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia, 39-53. 4. Chow, V. T. (1973). Open-channel Hydraulics, The McGraw-Hill Book Companies, Inc., Singapore. 5. Hornung, H. G., Willert, C., and Turner, S. (1995). “The flow field downstream of a hydraulic jump.” Journal of Fluid Mechanics, 287, 299-316. 6. Hoyt, J. W., and Sellin, R. H. J. (1989). “Hydraulic jump as ‘mixing layer’.” Journal of Hydraulic Engineering, ASCE, 115(12), 1607-1614. 7. Lennon, J. M., and Hill, D. F. (2006). “Particle image velocity measurements of undular and hydraulic jumps.” Journal of Hydraulic Engineering, ASCE, 132(12), 1283-1294. 8. Hsieh, S. C., Lin, C., Lin, W. J., and Chang, K. A. (2008) “Velocity and turbulence measurements of hydraulic jump using image based techniques.” To be submitted to Physics of fluid. 9. Leutheusser, H. J., and Kartha, V. C. (1972). “Effects of inflow condition on hydraulic jump.” Journal of the Hydraulics Division, ASCE, 98(HY8), 1367-1384. 10. Lin, C., Hsieh, S. C., Kuo, K. J., and Chang, K. A. (2008) “Periodic oscillation caused by a flow over a vertical drop pool.” Journal of Hydraulic Engineering, ASCE, 134(7), 948-960. 11. Liu, M., Rajaratnam, N., and Zhu, D. (2004). “Turbulence structure of hydraulic jumps of low Froude numbers.” Journal of Hydraulic Engineering, ASCE, 130(6), 511-520. 12. Long, D., Steffler, P. M., and Rajaratnam, N. (1990). “LDA study of flow structure in submerged hydraulic jump.” Journal of Hydraulic Research, IAHR, 28(4), 437-460. 13. Long, D., Rajaratnam, N., Steffler, P. M., and Smy, P. R. (1991). “Structure of flow in hydraulic jumps.” Journal of Hydraulic Research, IAHR, 29(2), 207-218. 14. Mehrotra, S. C. (1976). “Length of hydraulic jump.” Journal of the Hydraulics Division, ASCE, 102(HY7), 1027-1033. 15. Mossa, M., and Tolve, U. (1998). “Flow visualization in bubbly two-phase hydraulic jump.” Journal of Fluids Engineering, ASME, 120, 160-165. 16. Murzyn, F., Mouaze, D., and Chaplin, J. R., (2005). “Optical fibre probe measurements of bubbly flow in hydraulic jumps.” International Journal of Multiphase Flow, 31, 141-154. 17. Rajaratnam, N. (1965). “The hydraulic jump as a wall jet.” Journal of the Hydraulics Division, ASCE, 91(HY5), 107-132. 18. Rajaratnam, N., and Subramanya, K. (1968). “Profile of the hydraulic jump.” Journal of Hydraulics Division, ASCE, 94(HY3), 663–673. 19. Rajaratnam, N. (1976). Turbulent Jets. Elsevier Scientific Publishing Company. 20. Resch, F. J., Leutheusser, H. J., and Alemu, S. (1974). “Bubbly two-phase flow in hydraulic jump.” Journal of the Hydraulics Division, ASCE, 100(HY1), 137-149. 21. Rouse, H., and Ince, S. (1957). “History of hydraulics.” Iowa Institute of Hydraulic Research, State University of Iowa, Iowa City, Iowa. 22. Rouse, H., Siao, T. T., and Nagaratnam, S. (1958). “Turbulence characteristics of the hydraulic jump.” Journal of the Hydraulics Division, ASCE, 84(HY1), 1-30. 23. Ryu, Y., Chang, K. A., and Lim, H. J. (2005). “Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater.” Measurement Science and Technology, 16, 1945-1953. 24. Svendsen, I., Veeramony, J., Bakunin, J., and Kirby, J. (2000). “The flow in weak turbulent hydraulic jumps.” Journal of Fluid Mechanics, 418, 25-57. 25. Vischer, D. L. and Hager, W. H. (1995). Energy Dissipators, A. A. Balkema. 26. 鄭中南 (1996):「波動底部邊界層特性之實驗探討」,國立中興大學土木工程研究所博士論文。 27. 林呈 (1999):「跨河構造物防治沖刷之技術與策略研究─應用剛性或柔性攔砂堰作為橋基保護方法之評估探討」,行政院公共工程委員會專案研究計畫,第208 ~233頁。 28. 林呈 (2001):「台灣河流之沖刷對橋樑基礎與道路邊坡之影響及因應對策研究( I )」,交通部公路局專案研究計畫,第64 ~ 79頁。 29. 謝世圳 (2008):「建置具高時間解析度之PIV系統並應用於圓柱近域尾流特性之探討」,國立中興大學土木工程研究所博士論文。
本研究針對一組弱水躍(Fr1 = 2.45)及三組穩定水躍(Fr1 = 4.51、5.00、5.34)之實驗條件於循環水槽內進行速度量測,首先利用影像平均法訂定出水躍躍趾的位置。根據量測結果顯示,非氣泡區之速度場同時受到底部邊界層及水氣交接面下方之剪力層影響。根據本研究量測所得之水平平均速度場結果顯示,距躍趾下游6倍躍前水深處之流速僅約為躍趾處之水平平均速度,並非如Hager (1995)所述,於Fr1 = 4.95之條件下,x/y1 6處近底板之水平平均速度,可到達躍趾處近底板之水平平均速度的3 ~ 4倍,而與Chanson and Brattberg (2000),於Fr1 = 6.33實驗條件下之研究成果提出之結論,該處之水平平均速度,可到達躍趾處近底板之水平平均速度的0.85 ~ 0.90倍較為相近。
根據實驗結果發現,無論是弱水躍或是穩定水躍,其水平速度剖面都近似壁射流。而本研究選用Umax作為特徵速度尺度、ymax作為特徵長度尺度,並以u/Umax及 y/ymax為本實驗之無因次特徵參數,針對水平速度場進行相似性分析,進而獲得一相似性曲線。

The aim of the present study is to investigate the characteristics of the velocity fields of the hydraulic jump using particle image velocimetry (PIV). A hydraulic jump usually entrains air bubbles in the roller region. It is hard to measure velocity in this region due to many technical difficulties. Hence, the study only focuses on the water region of the hydraulic jump for further understanding.
The experiments of both weak and steady hydraulic jumps with Froude numbers being equal to 2.45, 4.51, 5.00 and 5.34 were.carried out in a recirculating water channel. Firstly, the toe of the roller was determined by the mean-image method. According to the results of the study, the flow field of water region contains the characteristics of bottom boundary layer and shear layer of water-gas interface. The maximum horizontal velocity at non-dimensional position x/y1 6 is about one time as the mean velocity near the bottom of the toe. The result is similar to that reported by Chanson and Brattberg (2000), but it is quite different from that reported by Hager (1995).
The velocity profiles of the weak jump and steady jump are both similar to those of a wall jet. The similarity profile of the horizontal mean velocities has been proposed. The characteristics of non-dimensional mean horizontal velocity profiles can be uniquely described by using the maximum horizontal velocity Umax and the value of position ymax (where Umax occurs) as the characteristic velocity and length scales, respectively. The similarity plot of u/Umax versus y/ymax can be established.
其他識別: U0005-2908200816521200
Appears in Collections:土木工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.