Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorTsung Yanen_US
dc.contributorYONG NIAN CHENen_US
dc.contributor.advisorHao-Ji Chenen_US
dc.contributor.authorChang, Yung-Hsuanen_US
dc.identifier.citation【1】 S. Mindess, J. F. Young, and D. Darwin. "Concrete. 2nd edition", Upper Saddle River, NJ: Prentice Hall, 2003. 【2】 塗耕業,“水泥漿體添加卜作嵐材料之水化特性研究”,國立中興大學碩士論文,2007. 【3】 S. H. Kosmatka, B. Kerkhoff, and W. C. Panarese, Design and Control of Concrete Mixtures, 14th Edition, EB001.14T, Portland Cement Association, Skokie, IL, 2002. 【4】 P. K.Metha, “Pozzolanic and Cementitious By-products as Mineral Admixtrues for Concrete ─ A critical Review”, First International Conference on the Use of Fly Ash, Silica Fume, Slag andother Mineral By-poducts in Concrete, pp. 1-46, Canada, 1983. 【5】 蔡壽楨,“含飛灰混凝土之孔隙與強度關係”,國立中興大學碩士論文,2005. 【6】 ACI Committee 266, "Use of Fly Ash in Concrete", ACI Materials Journal, pp. 381-409, Sep-Oct, 1987. 【7】 黃兆龍,「高爐熟料及飛灰材料在混凝土工程上之應用」,高爐石與飛灰資源在混凝土工程上應用研討會,財團法人台灣營建研究中心,民國75年12月。 【8】 林炳炎,“飛灰、矽灰、高爐爐石用在混凝土中”,1993。 【9】 中華民國八十二年混凝土技術研討會,“高爐水泥混凝土之應用”,主辦單位:內政部建築研究所籌備處、國立交通大學土木工程研究所、國科會工程處工程科技推展中心。 【10】 沈得縣,“高爐熟料與飛灰之波索蘭反應機理及對水泥漿體巨微觀性質影響之研究”,國立台灣工業技術學院博士論文,pp.13~18,民國80年。 【11】 中國國家標準CNS9661 新拌混凝土空氣含量檢驗法、CNS12223 水淬高爐爐渣。 【12】 ACI Committee 226, "Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete", ACI Materials Journal, pp 327-342, July-August, 1987. 【13】 張宏如,“噴水對火害混凝土燒失量之影響”,國立台灣工業技術學院碩士論文,1993。 【14】 Koichi Maekawa, Rajesh Chaube, and Toshiharu Kishi, "Modelling of Concrete Performance: Hydration, Miscrostructure and Mass Transport", Taylor & Francis; 1 edition, June 28, 1999. 【15】 T. C.Powers, "The Nonevaporable Water Content of Hardened Portland-Cement Paste–Its Significance for Concrete Research and Its Method of Determination", Research Department Bulletin RX029, Portland Cement Association, 1949. 【16】 P.K. Metha, "Concrete-Structure, Material and Properties", Prentice Hall, Englewood Cliffs, J. J. (1986). 【17】 S. Mindess & J. f. Young, "Concrete", Prentice-Hall, Inc. Englewood Cliffs, New Jersey (1981). 【18】 張郁慧, “火害延時對混凝土材料性質之影響”, 國立台灣工業技術學院碩士論文,1993。 【19】 A.M. Neville, “Properties of Concrete”, London, 1986. 【20】 ACI Committee 517, "Accelerated Curing of Concrete at Atmospheric Pressure, "State-of-the-Art,(ACT 517.2R-80), ACI Manual of Concrete Practice,Part5, 1998. 【21】 U.Schneider, "Concrete at high temperatures – a general review", Fire Safety Journal, 13, 55-68, 1988. 【22】 G.T.G Mohamedbhai, "Effect of exposure time and rates of heating and cooling on residual strength of heated concrete", Magazine of Concrete Research,vol.38,No.136,September, pp.151-158, 1986。 【23】 襲人俠,“水泥化學概論”,台灣區水泥工業同業公會,1980。 【24】 A. Bilodeau, V.K.R. Kodur, and G.C. Hoff, "Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire", Cement & Concrete Composites, Vol. 26, pp. 163-174, 2004. 【25】 T.A. Hammer, "Compressive Strength and E-modulus at Elevated Temperatures", Report 6.1, High Strength Concrete phase 3, SINTEF-report no STF70 A95023, Trondheim, pp. 16, 1995. 【26】 T.T. Lie and D.E. Allen, Calculation of the fire resistance of reinforced concrete columns, Division of Building Research, National Research Council of Canada, Technical Paper No. 378, Ottawa, NRCC 12797, 25 p. (1972). 【27】 Design of Concrete Structures for Buildings, 1984. Canadian Standards Association, CSA Standard CAN3-A23.3, Rexdale, Ontario, 281 p. 【28】 C. Castillo and AJ. Durrani, "Effect of transient high temperature on high-strength concrete", ACI Mater J., 87(1), pp.47-53(1990). 【29】 G. Sanjayan and LJ Stocks, "Spalling of high-strength silica fume concrete in fire", ACI Mater J., 90(2), pp. 170-173(1993). 【30】 S.Y.N. Chan, X. Luob, and W. Sunb, "Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete", Construction and Building Materials, No. (14), pp. 261-266(2000). 【31】 L.T. Phan and N.J. Carino, "Code Provisions for High Strength Concrete Strength-Temperature Relationship at Elevated Temperatures", Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8611, Gaithersburg, Maryland 20899-8611. 【32】 L.T. Phan, "Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art", NISTIR 5934, Building and Fire Research Lab``oratory, National Institute of Standards and Technology, (Gaithersburg, Maryland, December 1996). 【33】 L.T. Phan and N.J. Carino, "Review of mechanical properties of HSC at elevated temperature", Journal of Materials in Civil Engineering, American Society of Civil Engineers, v.10 (1) (February, 1998) 58-64. 【34】 L.T. Phan and N.J. Carino, "Mechanical Properties of High Strength Concrete at Elevated Temperatures", NISTIR 6726, Building and Fire Research Laboratory, National Institute of Standards and Technology, (Gaithersburg, Maryland, March 2001). 【35】 U. Schneider, "Concrete at high temperatures-A general review", Fire Safety Journal, The Netherlands (1988) 55-68. 【36】 U. Schneider, "Behavior of concrete at high temperatures", RILEM-Committee 44-PHT(February, 1983). 【37】 U. Schneider, "Properties of materials at high temperatures-Concrete", RILEM-Committee 44-PHT Department of Civil Engineering, University of Kassel (Kassel, June, 1985). 【38】 L.T. Phan and N.J. Carino, "Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures", ACI Materials Journal, American Concrete Institute, v. 99 (1) (January-February, 2002) 54-66. 【39】 A. Alnajim, Modelisation et simulation du comportement du beton sous hautes temperatures par une approche thermo-hygro-mecaniique couplee application a des situations accidentelles (2004). 【40】 Y. Anderberg, Spalling phenomena of HPC and OC. Proc., In Workshop on Fire Performance of High-Strength Concrete, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., 69-73(1997). 【41】 Z.P. Bažant, Analysis of pore pressure: thermal stresses and fracture in rapidly heated concrete, Proc, In Workshop on Fire Performance of High-Strength Concrete, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., 155-164(1997). 【42】 W.J.Copies, "The Spalling of Normal Weight and Lightweight Concrete Exposed to Five",1987. 【43】 涂耀賢,“以燒失量試驗法推測混凝土受火害程度之研究”,碩士論文,國立台灣工業技術學院營建工程研究所,1991。 【44】 S.Y.N.Chan, G.F. Peng and M Anson. “Residual strength and pore structure of high-strength concrete and normal-strength concrete after exposure to high temperatures”. Cement and Concrete Composites, 21, pp. 23-27(1999).zh_TW
dc.description.abstract本研究旨在探討高溫對高性能混凝土(high performance concrete,簡稱HPC)殘餘抗壓強度及孔隙壓力之影響,所配製的混凝土共有三種系列,分別為純水泥混凝土(ordinary Portland concrete,簡稱OPC)、飛灰-水泥混凝土(fly ash/cement-concrete,簡稱FC)以及爐石-水泥混凝土(slag/cement-concrete,簡稱SC),以進行火害殘餘抗壓強度試驗及孔隙壓力試驗;其中,OPC作為控制組,FC及SC則為對照組。試驗變數計有水膠比(water-to-binder ratio by weight,簡稱w/b)、卜作嵐材料取代率、齡期、養護條件、火害試驗溫度及延時。w/b共分為0.30、0.45及0.60三種;FC中,飛灰取代水泥的重量百分比分為15%、30%及45%三種;而SC中,爐石取代水泥的重量百分比分為30%、50%及70%三種。 在91天齡期時,將不同水汽含量的殘餘抗壓強度試驗試體(100 × 200 mm)置於高溫電爐,以10℃/min速率加熱,直至所需溫度(計有500℃、700℃及900℃三種),達到最高溫度後,其延時又分為兩種情況,即0 hr及1 hr。經設計最高火害試驗溫度火害作用後的試體,先使其自然冷卻至常溫23℃,再將已冷卻的火害後試體置於抗壓試驗機承壓軸的正中心以進行加載,以求得試體之殘餘抗壓強度。另方面,將不同齡期的孔隙蒸氣壓力試驗試體(100 × 200 mm)放入高溫電爐內,以1℃/min的速率加熱至900℃。每個試體均在不同位置埋設壓力管(連至壓力計)及感溫線,以量測其孔隙壓力及溫度。 試驗結果顯示,在火害溫度低於500℃時,試體不論是何種狀態,FC及SC之耐火性較OPC者優異。因飛灰和爐石可與CH發生卜作嵐反應,可消耗混凝土中的CH,而提升混凝土在常溫與高溫時的強度與耐久性。當火害溫度高於500℃時,FC中以取代率45%者的相對強度比最佳,而在SC中以取代率30%者的相對強度比最佳。至於孔隙蒸氣壓力試驗結果,由受熱混凝土內部溫度之歷時曲線,可闡述其水汽傳輸過程。尤其是,混凝土內部水汽轉變及傳輸現象對其溫度及孔隙蒸氣壓力的發展具有特殊的影響。大體而言,當試體溫度介於100℃~150℃之範圍時,其內部的孔隙壓力呈現出顯著增加的情形,而其內所含自由水的蒸發及水汽傳輸也正是發生在此溫度範圍。此外,當試體溫度介於150℃~170℃之範圍時,其內部孔隙壓力的亦與其內化學鍵結水的釋放有關。zh_TW
dc.description.abstractThis research aimed to investigate the residual compressive strength and pore pressure of high performance concrete (HPC) after exposure to high temperature. Three series of concrete (i.e. plain Portland cement concrete (PC), fly ash/cement concrete (FC), and blast-furnace slag/cement concrete (SC)) were prepared to measure their residual strengths and pore pressures. Among them, OPC without mineral admixtures were prepared at the same water to binder ratio (w/b) as the reference. The experimental variables included w/b ratio, percentage of cement replacement (by mass) by mineral admixtures, curing ages, curing conditions, and duration of high temperature. The ratios of w/b used were 0.30, 0.45, and 0.60. The cement replacement by fly ash were 15, 30, and 45% in FC, while by slag were 30, 50, and 70% in SC. At the age of 91 days, residual strength specimens (100 × 200 mm cylinders) with different moisture contents were placed in an electrical furnace with heat applied at a rate of 10℃/min to high temperatures ranging from 500℃ to 900℃. Specimens were then allowed to cool down to room temperature in the furnace and tested for residual compressive strengths. On the other hand, pore pressure specimens (100 × 200 mm cylinders) with different curing ages were placed in an electrical furnace with heat applied at a rate of 1℃/min to 900℃. All pore pressure specimens were instrumented with pressure gages and thermocouples at different depths to measure pore pressure and temperature developments in the specimen. Test results showed that concretes containing fly ash and slag showed better performance particularly at temperatures below 500℃ as compared with the plain cement concretes. This better performance was due to the reaction of these mineral admixtures with calcium hydroxide (CH), which enhances the strength and durability both at normal and high temperatures by reducing the CH content. For exposure to 500℃, the mix containing 45% fly ash replacement gave the maximum relative strength ratio in the FC, while the mix containing 30% slag replacement showed the maximum relative strength ratio in the SC. As for the results of the pore pressure test, it was found that internal concrete temperature histories could provide insights into the moisture transport process in HPC. In particular, the transformation and mass transport of moisture in concrete have a unique influence on its temperature and pore pressure developments. In general, noticeable rise in pore pressure occurs when concrete reaches the temperature range of 100℃ to 150℃, which coincides with the vaporization of free water and transport of water vapor. Besides, in the concrete''s temperature range of 150℃ and 170℃, the change of pore pressure occurs is relative to the release of chemically bound water.en_US
dc.description.tableofcontents中文摘要 I ABSTRACT II 總目錄 III 表目錄 V 圖目錄 VI 論文照片 IX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 研究方法 2 第二章 文獻回顧 5 2.1 水泥 5 2.1.1水泥的成分 5 2.1.2水泥的分類 5 2.2 卜作嵐材料 5 2.2.1卜作嵐材料的定義 5 2.2.2飛灰 6 2.2.3爐石 8 2.3 混凝土的組成 9 2.4 混凝土內部成分與結構 9 2.4.1水化產物種類 10 2.4.2孔隙結構 10 2.4.3混凝土內部的水分 11 2.5 高溫下混凝土的性質變化 12 2.5.1混凝土化學性質變化 12 2.5.2高溫對混凝土裂縫的影響 13 2.5.3混凝土的殘餘強度 14 2.5.4混凝土的爆裂 15 第三章 試驗規劃 26 3.1 試驗變數 26 3.2 試驗材料 27 3.3 試體製作 27 3.3.1試驗配比 27 3.3.2試體尺寸 27 3.3.3試體拌製及養護 28 3.4 試驗方法 28 3.5 試驗儀器及設備 29 第四章 試驗結果分析與討論 36 4.1抗壓強度試驗結果 36 4.1.1混凝土之抗壓強度分析 36 4.1.2飛灰混凝土之抗壓強度發展趨勢 37 4.1.3爐石混凝土之抗壓強度發展趨勢 39 4.1.4飛灰與爐石混凝土之抗壓強度差異 40 4.2火害試驗結果 42 4.2.1試體含水量之試驗結果 42 4.2.2抗壓強度及含水量對火害爆裂率之影響 42 4.2.3飛灰混凝土火害後之相對強度比 46 4.2.4爐石混凝土火害後之相對強度比 51 4.2.5飛灰及爐石混凝土火害後相對強度比之比較 54 4.3 孔隙壓力試驗結果 55 4.3.1混凝土孔隙壓力量測 55 4.3.2混凝土溫度與孔隙壓力之發展 56 4.3.3孔隙壓力試驗結果之分析 58 第五章 結論 105 5.1混凝土抗壓強度部分 105 5.2火害試驗部分 106 5.3孔隙壓力部分 107 參考文獻 109zh_TW
dc.subjectHigh Temperatureen_US
dc.titleEffects of High Temperature on the Residual Compressive Strength and Pore Pressure of High Performance Concreteen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:土木工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.