Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorYu-Lin Huangen_US
dc.contributorChia-Chi chengen_US
dc.contributorChih-Peng Yuen_US
dc.contributor.advisorYi-Ching Linen_US
dc.contributor.authorLee, Cheng-yuenen_US
dc.identifier.citation1. 郭世芳,「探討超音波速度與混凝土抗壓強度之關係與其應用」,國立中興大學土木工程學系博士論文,民國九十六年七月 2. 賴朝鵬,「混凝土材料組成對其流動性質與波傳行為之影響」,國立中興大學土木工程學系博士論文,民國八十八年六月 3. 干裕成,「劣化混凝土材料應力波傳速度與E值、老化時程及抗壓強度之關係」行政院原子能委員會委託研究計畫研究報告,民國92年12月。 4. 楊仲家,黃然,葉為忠, “以微觀力學探討粗骨材對高性能混凝土之影響”, 第三屆結構工程研討會, 1996,pp.1785-1793。 5. 邱欽賢,“水工結構混凝土之抗沖蝕性”,國立中興大學土木工程學系碩士論文,民國91年6月。 6. 劉玉雯,“應用於水工結構表層之高性能混凝土磨損行為”,國立中興大學土木工程學系博士論文,民國95年1月。 7. 沈進發,”混凝土品質控制”,第三版,民國72年9月,第7-35頁。 8. 林炳炎,“飛灰與飛灰混凝土”,現代營建,民國82年7月 9. 黃兆龍,“混凝土性質與行為”,詹氏書局,民國86年8月。 10.島川正憲 著,賴迪陽 譯,「超音波工學理論實務」,復漢出版社,民國71年。 11.黃啟貞,“超音波檢測試驗法”,中華民國非破壞檢測協會(上冊),民國69年。 12.V.R. Sturrup, F.J. Vecchio and H. Caratin, “Pulse Velocity as a Measure of Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227 13. T.R. Naik and V.M. Malhotra, “The Ultrasonic Pulse Velocity Method”, Chapter 7 in CRC Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. carino, Eds., CRC Press, Boca raton, FL,1991, pp.169-188. 14. V.M. Malhotra/Editor et al., “In Situ/Nondestructive Testing of Concrete”, ACI SP-82, 1984 15. Tanigawa, Y., Baba, K., and Mori, H., “Estimation of Concrete Strength by Combined Nondestructive Testing Method”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 57-76. 16. ACI Committee 228 Report, “In-Place Methods to Estimate Concrete Strength,” ACI 228.1R-95, 2003, 41 pages. 17. Bungey, J.H., "Testing of Concrete in Structures," Surrey University Press, Glasgow, 1982, pp. 207 18. Malhotra, V.M., “Testing Hardened Concrete : Nondestructive Methods,” ACI Monograph, No. 9, American Concrete Institute/Iowa State University Press, Detroit, 1976, pp. 204. 19. RILEM Recommendations NDT 1, "Testing of Concrete by the Ultrasonic Pulse Method," Paris, 1972, December. 20. Knab, L.J., Blessing, G.V., and Clifton, J.R. (), "Laboratory Evaluation of Ultrasonics for Crack Detection in Concrete," ACI J., 80, 17, 1983. 21. Mary J. Sansalone and William B. Streett, “Impact-Echo: Nondestructive Evaluation of Concrete and Masonry”, BULLBRIER Press, ITHACA, N.Y., 1997, 339 pages. 22. Chao-Peng Lai, Yiching Lin, and Tsong Yen, “Behavior and Estimation of Ultrasonic Pulse Velocity in Concrete,” The International Conference on Structural Engineering ,Mechanics and Computation, Cape Town South Africa, 2001, pp. 1365-1372. 23. Stephen Pessiki and Matthew R. Johnson, “Nondestructive Evaluation of Early-age Concrete Strength In Plate Structures by the Impact-Echo Method,” ACI Materials Journal, Vol. 93, No.3, 1996, pp.260-271. 24. Galan Andrej, “Estimate of Concrete Strength by Ultrasonic Pulse Velocity and Damping Constant,” ACI Journal, Vol. 64, No. 10, 1967, pp. 678-684. 25. Sandor Popovics, L. Joseph Rose, and John S. Popovics, “The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Reaserch, Vol. 20, No.2, 1990, pp.259-270. 26. Lin, Y.; Changfan, H,; and Hsiao, C., “Estimation of High-Performance Concrete Strength by Pulse Velocity,” Journal of the Chinese Institute of Engineers, Vol. 20, No. 6, 1998, pp. 661-668. 27. ASTM C 805 (1992), "Standard Test Method for Rebound Number of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02. 28. ASTM C 803 (1992), "Standard Test Method for Penetration Resistance of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02. 29. ASTM C 1150 (1992), "Standard Test Method for the Break-Off Number of Concrete," Annual Book of ASTM Standards, Vol. 04.02. 30. ASTM C 900 (1999), "Standard Test Method for Pullout Strength of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02. 31. BSI, 1992, “Recommendations for the Assessment of Concrete Strength by Near-to-Surface Tests,” BS 1881, Part 207, British Standards Institution. 32. ASTM C 597 (1992), "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02. 33. ASTM C 1074 (1992), "Standard Practice for Estimating Concrete Strength by the Maturity Method," Annual Book of ASTM Standards, Vol. 04.02. 34. ASTM C 873 (1992), "Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds," Annual Book of ASTM Standards, Vol. 04.02. 35. Brian B. Hope and Paul M. Hewitt, “Progressive Concrete Mix Proportioning”, ACI Materials Journal, Vol82, No.3, May-June 1985, pp.350-356. 36. Charles T. Kennedy, “The Design of Concrete Mixes”, ACI Materials Journal, Vol36, 1940, pp.373-400. 37. Leif Berntsson, Satish Chandra, and Tomas Kutti, “Principles and Factors Influencing High-Strength Concrete Production”, Concrete International, Vol.12, No.12, December 1990, pp.59-62. 38. C.C. Yang and R. Huang, “ A Two-Phase Model for Predicting the Compressive Strength of Concrete”, Cement and Concrete Research, Vol.26, No.10, 1996, pp.1567-1577. 39. H.J. Chan, T.Yen, T.P. Lai and Y.L.Huang, “Determination of dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement and Concrete Composites, Vol.21, No.1, 1999, pp.29-37. 40. Popovics.S.,”Analysis of Concrete Strength versus water-cement ratio relationshop”ACI Materials Journal,Sep.-Oct.1990,PP.517-529. 41. Dan E.Branson,”Deformation of Concrete Structure” ,1978 .p.2 42. A.Meyer Betonstein Zeitung,Vol.29,No.8,1963,PP.391-394 43. T.R. Naik, “The Ultrasonic Testing of Concrete”, Published by ACI in Experimental Methods in Concrete Structure for Practitioners, G.M. Sabnis and N. Fitzsimons, Eds, October 1979. 44. J.Műller-Rochholz, “Determination of the Elastic Properties of Lightweight Aggregate by Ultrasonic Pulse Velocity”, The International Journal of Lightweight Concrete, Vol.1, No.2, 1979, pp.87-90. 45. R. E. Philleo, “Comparison of Results of Three Methods for Determining Young’s Modulus of Elasticity of Concrete”, Journal of ACI, Vol.51, No.5, January 1955,pp.461-469. 46. Klieger Paul, “Long-Time Study of Cement Performance in Concrete, Chapter 10-Progress Report on Strength and Elastic Properties of Concrete”, Journal of ACI, Vol.54, No.6, December 1957,pp.481-503. 47. W.F. Price and J.P. Hynes, “In-Situ Strength Testing of High Strength Concrete”, Magazine of Concrete Reseach, Vol.48, No.176, Sept. 1996,pp.189-197. 48. A. Anderson David and K. Seals Roger, “Pulse Velocity as a Predictor of 28- and 90-Day Strength”, ACI Materials Journal, Vol.78, No.2, March-April 1981, pp.116-122. 49. M.F. Kaplan, “Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns”, Journal of ACI, Vol.54, No.8, February 1958,pp.675-688. 50. P. S. Pessiki and N.J. Carino, “Setting Time and Strength of Concrete Using the Impact-Echo Method”, ACI Materials Journal, 1988; Vol.85, No.5, pp.389-399. 51. H. W. Chung and K.S. Law, “Diagnosing in Situ Concrete by Ultrasonic Pulse Technique”, Concrete International, Vol.13, No.10,1983, pp.42-49. 52. F. Sellect Scott, N. Landis Eric, L. Peterson Michael, P. Shah Surendra and D. Achenbach Jan, “Ultrasonic Investigation of Concrete with Distributed Damage”, ACI Materials Journal, Vol.95, No.1, January-February 1998, pp.27-36. 53. Wimal Suaris and Viraj Fernando, “Ultrasonic Pulse Attenuation as a Measure of Damage Growth during Cyclic Loading of Concrete”, ACI Materials Journal, May-June 1987, Vol.84, pp.185-193. 54. T.T. Wu and T. F. Lin, “The Stress Effect on the Ultrasonic Velocity Variation of Concrete under Repeated Loading”, ACI Materials Journal, Vol.95, No.5, September-October 1998, pp.519-524. 55. Andersen Johannes and Nerenst Poul, “ Wave Velocity in Concrete”, Journal of ACI, Vol.48, No.8, April 1952,pp.613-636. 56. R. Jones, “Testing of Concrete by an Ultrasonic Pulse Technique”, RILEM Int. Symp. On Nondestructive Testing of Materials and Structures, Paris. Vol.1, Paper No.A-17, January 1954, pp.137, RILEM Bull. No.19, 2nd part, November 1954. 57. M.F. Kaplan, “Effects of Incomplete Consolidation on Compressive and Flexural Strength, Ultrasonic Pulse Velocity, and Dynamic Modulus of Elasticity of Concrete”, Journal of ACI, Vol.56, No.9, March 1952, pp.853-867. 58. Sandor Popovics, “A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock, SEM-RILEM International Conference, June 1987,Houston Texas, pp.170-174. 59. ASTM C 597 (1992), "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02. 60. ASTM C 1383 (1998). "Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method" Annual Book of ASTM Standards, Vol. 04.02., 1998. 61. Malhotra, V.M., /Editor et al. (1984).“In Situ/Nondestructive Testing of Concrete”, ACI SP-82, 1984. 62.Komloš, K., Popovics, S., Nürnbergerová, T., Babál, B. and Popovics, J.S. (1996).〝Ultrasonic Pulse Velocity Test of Concrete Properties as Specified in Various Standards,〞Cement and Concrete Composites Volume: 18, June, 1996, pp. 357-364.zh_TW
dc.description.abstract本研究之目的探討混凝土於早齡期之波速與強度成長率關係,首先將既有資料之波速與強度(水泥糊體量36%,不同水灰比:w/c=0.3、0.4、0.5、0.6、0.7,其砂率有三種30、45、60%,齡期為1、3、7、9、14及28天),轉換成波速與強度成長率,並建立其波速與強度成長率關係曲線,之後規劃試體驗證其迴歸曲線是否適用不同水泥糊體量及不同砂率,驗證混凝土配比為不同水泥糊體量36%與42%,不同水灰比:w/c=0.4、0.5、0.6、0.7,固定砂率40%,製作混凝土圓柱試體,分別在齡期1、4、7、9、14、28天時對圓柱試體量量測波速(超音波法與敲擊回音法)與抗壓強度。 實驗結果顯示,水泥糊體量36%在各水灰比(0.4~0.7),用其波速成長率評估強度,可得良好結果,除齡期第一天波速成長率未達資料所建立迴歸曲線範圍內,大部份預測強度與實測強度差異皆低於±10%以內,而水泥糊體量42%在各水灰比(0.4~0.7),其波速成長率評估強度會有較大變異性,由此可知,不同的水泥糊體量將會影響迴歸方程式之適用性,值得做進一步之探討。 另外,在同齡期下相同試體,其敲擊回音法之波速明顯小於超音波法之波速,且兩者之間並無明顯關係,導致敲擊回音法之波速成長率使用超音波波速與強度成長率關係曲線會造成相當大的誤差,故另建立IE-V與強度成長率關係曲線,其中每個資料點與迴歸曲線變異性不大,顯示所建立之模擬曲線方程式可適用於敲擊回音法之波速評估早齡期混凝土強度。zh_TW
dc.description.abstractThe purpose of this thesis is to discuss the relationship between the wave velocity and the compressive strength growth rates of concrete at various ages. At the start, the relationship between the ultrasonic pulse velocity (UPV) and the compressive strength growth rates is established based on the previous test data. All the tested specimens had a constant cement paste volume ratio (Vpaste) of 36%. The variables in mixture proportion of the tested specimens included five water-cement ratios of 0.3, 0.4, 0.5, 0.6, and 0.7 and three volume ratios of fine aggregate to total aggregate (30%, 45%, and 60%). Those specimens were tested at 1, 3, 7, 14 and 28 days. The experimental data were used to establish the relationship curve between the UPV and the compressive strength growth rates. Subsequently, verification program is carried out to investigate if the established relationship is suitable for other concrete specimens with different mixture proportions. The specimens were made of concrete with cement paste volume ratios of 36% and 42%, the constituents of the specimens varied in different water/cement ratios (w/c=0.4, 0.5, 0.6 and 0.7). The volume ratio of fine aggregate to total aggregate was 40%. These specimens were tested at 1, 4, 7, 14 and 28 days. For each test, the UPV and impact-echo velocity (IEV) were measured before compressive test. Experimental results show that the most individual difference between the estimated strength by UPV and the measured strength of concrete are less than 10%. It has been verified that the established relationship curve is suitable for concrete having different mixture proportions with same cement paste content (Vpaste=36%). However, the estimate of concrete strength by UPV of the cement paste is 42% has greater variation than cement paste is 36%. Therefore, the effect of cement paste on the relationship between the wave velocity and the compressive strength growth rates of concrete at various ages should be considered in future research. In addition, IEV is smaller than UPV of the same specimen at same age and between both is not related obviously. As a result, there is a need to establish its own relationship between IE-V and the compressive strength growth rates. A small difference between each experimental data and the best-fit curve of the IEV-strength growth rate relationship is found. The use of the measured IEV to predict compressive strength of concrete is suitable.en_US
dc.description.tableofcontents總目錄 摘要 I Abstract III 目錄 IV 表目錄 VI 圖目錄 IX 目錄 第一章 緒論 1 第二章 文獻回顧 2 2-1 混凝土強度之非破壞檢測技術介紹 2 2-2 混凝土之材料組成 10 2-2-1材料組成與混凝土性質 11 2-2-2 混凝土強度之影響因素 12 2-3 混凝土之波傳行為特性 14 2-3-1 波速檢測於混凝土性質之研究 14 2-3-2 影響混凝土波傳速度之主要因素 15 2-4 水泥糊體與混凝土之UPV與強度成長 17 2-4-1水泥糊體UPV與抗壓強度之成長 17 2-4-2混凝土UPV與抗壓強度之成長 17 2-4-3粗骨材含量對硬固混凝土UPV與抗壓強度之影響 18 2-4-4硬固混凝土UPV與抗壓強度模擬曲線 18 第三章 研究規劃與試驗方法 20 3-1 研究流程 20 3-1-1 試體規劃 20 3-1-2 試驗材料與性質 20 3-1-3 圓柱試體製作 21 3-2 試驗方法 21 3-2-1 超音波法 21 3-2-2 敲擊回音法[60] 23 3-2-3 抗壓強度試驗 24 第四章 早齡期波速與強度關係探討 25 4-1波速與強度於早齡期發展 25 4-3早齡期混凝土強度-波速成長關係曲線之建立 26 第五章 早齡期混凝土波速評估抗壓強度之可行性探討 28 5-1 迴歸曲線方程式之驗證 28 5-2 非迴歸曲線之水泥糊體量預估強度適用性 29 5-3 敲擊回音法在混凝土早齡期之強度評估 30 5-3-1早齡期混凝土IE-V與強度成長關係曲線之建立 30 5-3-2 探討敲擊回音法與超音波法差異 31 第六章 結論與建議 32 6-1 結論 32 6-2 建議 33 參考文獻 (REFERENCES) 34zh_TW
dc.subjectUltrasounic Pluse Velocityen_US
dc.subjectearly ageen_US
dc.titleEstimate of Concrete Strength at Various Ages Using the Ultrasounic Pluse Velocityen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:土木工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.