Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16059
DC FieldValueLanguage
dc.contributor蔡長泰zh_TW
dc.contributor詹錢登zh_TW
dc.contributor陳正炎zh_TW
dc.contributor陳臺芳zh_TW
dc.contributor.advisor盧昭堯zh_TW
dc.contributor.author李俊佶zh_TW
dc.contributor.authorLee, Jun-Jien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:54:57Z-
dc.date.available2014-06-06T06:54:57Z-
dc.identifierU0005-2108200906405300zh_TW
dc.identifier.citation1. 毛野、楊華、袁新明 (2002) "表面糙率與明渠紊流猝發." 水利 學報(6), 55-61. 2. 吳爾玲 (2006) "降雨打擊下光滑薄層流之隨機特性試驗研究." 中興大學土木工程學系碩士論文. 3. 張福顯 (1996) "雨點作用下之明渠流紊動特性研究." 中興大學 土木工程學系碩士論文. 4. 陳正炎 (1998) "降雨對薄層流水力特性之效應研究." 中興大學 土木工程學系博士論文. 5. 劉春晶、李丹勛、王興奎 (2005) "明渠均勻流的摩阻流速及流速 分佈." 水利學報, 36(8), 1-8. 6. 劉家盛 (1995) "降雨對粗糙底床淺水渠流之試驗研究." 中興大 學土木工程學系碩士論文. 7. 錢寧、萬兆惠 (1991) "泥沙運動力學" 科學出版社. 8. 賴奕誠 (1994) "雨點打擊對光滑底床淺水明渠流之影響." 中興 大學土木工程學系碩士論文. 9. Bayazit, M. (1976) "Free surface flow in a channel of large relative roughness." J. Hydr. Res., 14(2), 115- 125. 10. Beecham, S., Khiadani, M. H., and Kandasamy, J. (2005) "Friction factors for spatially varied flow with increasing discharge." J. Hydr. Engrg., 131(9), 792-799. 11. Cardoso, A. H., Graf, W. H., and Gust, G. (1990) "Uniform flow in a smooth open chennal." J. Hydr. Res., 27(5), 603-616. 12. Chow, V. T. (1959) Open-Channel Hydraulics., McGraw- Hill, Inc., New York. 13. Drake, T. G., Shreve, R. L., Dietrich, W. E., Whiting, P. J., and Leopold, L. B. (1988) "Bed load transport of fine gravel observed by motion picture photography." J. Fluid Mech., 192, 193-217. 14. Einstein, H. A., and El-Samni, A. (1949) "Hydrodynamic forces on a rough wall." Rev. Modern Phys., 21(3), 418- 426. 15. Frenkiel, F. N., and Klebanoff, P. S. (1973) "Probability distributions and correlations in a turbulent boundary layer." Phys. of Fluids, 16(6), 725- 737. 16. Glass, L. J., and Smerdon, E. T. (1967) "The effect of rainfall on the velocity distribution in shallow channel flow." Trans. ASAE, 10, 330-336. 17. Graf, W. H., Song, T., and Lemmin, U. (1994) "Uniform flow in open channels with movable gravel bed." J. Hydr. Res., 32(6), 861-876. 18. Grass, A. J. (1971) "Structural features of turbulent flow over smooth and rough boundaries." J. Fluid Mech., 50, 233-255. 19. Gupta, A. K., and Kaplan, R. E. (1972) "Statistical characteristics of Reynolds stress in a turbulent boundary layer." Phys. of Fluids, 15(6), 981-985. 20. Hossein, B., Larrarte, F., Lassabatere, L., and Joannis, C. (2008) "Turbulent velocity profile in fully- developed open channel flows." Environ. Fluid Mech., 8, 1-17. 21. Jan, C. D., Wang, J. S., and Chen, T. H. (2006) "Discussion of simulation of flow and mass dispersion in meandering channel." J. Hydr. Engrg., 132 (3), 339-342. 22. Keshavarzi, A., and Ball, J. E. (1999) "An application of image processing in the study of sediment motion." J. Hydr. Res., 37(4), 559-576. 23. Keulegan, G. H. (1952) "Determination of critical depth in spatially variable flow." Proc., 2nd Midwestern Conf. on Fluid Mechanics, Bulletin 149, Ohio State Univ., Engineering Experiment Station, Columbus, Ohio, 67-80. 24. Kibens, V. (1968) "The intermittent region of a turbulent boundary layer." PH. D. dissertation, The Johns Hopkins University. 25. Kirkgoz, M. S. (1989) "Turbulent velocity profiles for smooth and rough open channel flow." J. Hydr. Engrg., 115(11), 1543-1561. 26. Kirkgoz, S., and Ardiclioglu, M. (1997) "Velocity profiles of developping and developed open channel flow." J. Hydr. Engrg., 115(11), 1099-1105. 27. Laufer, J. (1950) "Investigation of turbulent flow in a two-dimensional channel." NACA,Tech. Report. 1053, 1247- 1266. 28. Laufer, J. (1953) "The structure of turbulence in fully developed pipe flow." NACA,Tech. Report. 1174, 1-18. 29. Laufer, J. (1954) "Investigation of turbulent flow in a two-dimensional channel." Technical Note 2123, NACA. 30. Laws, J. O. (1941) "Measurements of the fall-velocity of water-drops and raindrops." American Geophysical Union Transactions(20), 709-721. 31. Li, R. M., Schall, J. D., and Simons, D. B. (1980) "Turbulence prediction in open channel flow." J. Hydr. Div., 106(HY4), 575-587. 32. Lu, J. Y., Chen, J. Y., Chang, F. H., and Lu, T. F. (1998). "Characteristics of shallow rain-impacted flow over smooth bed." J. Hydr. Engrg., 124(12), 1242-1252. 33. Lu J. Y., Chen J. Y., Hong J. H., and Lu T. F. (2001) "Turbulence intensities of shallow rain-impacted flow over rough bed." J. Hydr. Engrg., 127(10), 881-886. 34. Lu, S. S., and Willmarth, W. W. (1973) "Measurements of the structure of the Reynolds stress in a turbulent boundary layer." J. Fluid Mech., 60(3), 481-511. 35. Machemehl, J. L. (1968) "Sediment transport in shallow subcritical flow disturbed by simulated rainfall." Technical report No.15, Water Resources Institute, Texas a & M University. 36. Meyer-Peter, E. and Muller, R. (1948) "Formulas for bed- load transport" Rept 2nd Meeting Int. Assoc. Hydraul. Struct. Res., Stockholm, 39-64. 37. McQuivey, R. S., and Richardson, E. V. (1969) "Some turbulecne measurements in open channel flow." J. Hydr. Div., 95(HY1), 209-223. 38. Monin, A. S., and Yaglom, A. M. (1971) "Statistical Fluid Mech." M.I.T Press, 1, 205. 39. Moss, A. J., and Green, P. (1983) "Movement of solids in air and water by raindrop impact. Effects of drop- size and water-depth variations." Aust. J. Soil Res., 21 (3), 257-269. 40. Nakagawa, H., and Nezu, I. (1977) "Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows." J. Fluid Mech., 80, 99- 128. 41. Nezu, I. (1977) "Turbulent structure in open channel flows." Ph. D. Thesis presented to Kyoto University, Kyoto, Japan. 42. Nezu, I., and Nakagawa, H. (1993) "Turbulence in open- channel flows." A. A. Balkema Publishers, Brookfield, Vt. 43. Nezu, I., and Rodi, W. (1986) "Open-channel flow measurements with a laser doppler anemometer." J. Hydr. Engrg., 112(5), 335-355. 44. Nikuradse, J. (1932) "Gesetzmaessigkeiten der turbulenten stroemung in glatten rohren." Vereines Deutscher Ingenieur, Forschungscheft, 356. 45. Nikuradse, J. (1950) "Laws of flow in rough pipes." Translation in National Advisory Committee for aeronautics, Technical Memorandum 1292,Washington, 62. 46. Nychas, S. G., Hershey, H. C., and Brodkey, R. S. (1973) "A visual study of turbulent shear flow." J. Fluid Mech., 61, 513-540. 47. Pao, H. F. (1967) "Fluid dynamics." Charles E. Merrill Books, Inc. Columbus, Ohio. 48. Prandtl, L. (1925) "Uber die ausgebildete turbulenz." ZAMM., 5, 136. 49. Raupach, M. R. (1981) "Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers." J. Fluid Mech., 108, 363-382. 50. Reynolds, J. (1974) "Turbulent flows in engineering." Wiley and Sons Ltd., London, Great Britain. 51. Rotta, J. C. (1972) "Turbulente strömungen." B.G. Teubner. 52. Rouse, H. (1965) "Critical analysis of open-channel resistance." J. Hydr. Div., 91(HY4), 1-25. 53. Schlichting, H. (1979) "Boundary layer theory." McGraw- Hill Book Co, 7th. 54. Shahabian, H., and Delleur, J. W. (1976) "An experimental investigation of the Rainfall on the turbulence properties of overland flow." Technical report No.8, Purdue University, W. Lafayette, Ind. 55. Steffer, P. M., Rajaratnam, N., and Peterson, A. W. (1985) "LDA measurements in Open Channel." J. Hydr. Engrg., 111(1), 119-130. 56. Tan, S. K. (1989). "Rainfall and soil detachment." J. Hydr. Res., 27(5), 699-715. 57. Tennekes, H., and Lumley, J. L. (1972) "A first course in turbulence." The Massachusetts Institute of Technology. 58. Tominaga, A., and Nezu, I. (1991) "Turbulent structure in compound open-channel flows." J. Hydr. Engrg., 111 (1), 21-41. 59. Tominaga, A., and Nezu, I. (1992) "Velocity profiles in steep open-channel." J. Hydr. Engrg., 118(1), 73-90. 60. Townsend, A. A. (1961) "Equilibrium layers and wall turbulence." J. Fluid Mech., 11(1), 97-120. 61. Wallace, J. M., Eckelmann, H., and Brodkey, R. S. (1972) "Statistical characteristics of Reynolds stress in a turbulent boundary layer." Phys. of Fluids, 54(6), 981-985. 62. Wallace, J. M., Eckelmann, H., and Brodkey, R. S. (1972) "The wall region in turbulent shear flow." J. Fluid Mech., 54, 39-48. 63. Webel, G., and Schatzmann, M. (1984) "Transverse mixing in open channel flow." J. Hydr. Engrg., 110(4), 423-435. 64. Willmarth, W. W., and Lu, S. S. (1972) "Structure of the Reynolds stress near the wall." J. Fluid Mech., 55 (1), 65-92. 65. Yen, B. C., and Wenzel, H. G. (1970) "Dynamic equations for steady spatially varied flow." J. Hydr. Div., 96 (HY3), 801-814. 66. Yoon, Y. N. (1970) "The effect of rainfall on the mechanics of steady spatially varied sheet flow on a hydraulically smooth boundary." Ph. D. dissertation, University of Illinois at Urbana-Champaign, Ill.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16059-
dc.description.abstract在自然界中,土壤分離與泥砂顆粒之運移,主要是受雨滴打擊與漫地流作用所致。早期之研究當中,關於降雨打擊薄層水流流場之精密量測與模擬誠屬有限,且大多僅著重於降雨強度對薄層水流之影響。本研究除考慮降雨強度之外,亦加入雨滴粒徑對流場可能產生之效應探討。研究中採用二維光纖杜普勒測速儀 (2-D Fiber-optic Laser Doppler Velocimetry,簡稱2D-FLDV),量測二維、完全發展之流場。就光滑底床而言,除延續以往試驗之外,更將試驗坡度擴大至0.5%及1%,且納入已量測之漸變粗糙與粗糙底床試驗資料進行分析,以期深入瞭解降雨打擊薄層水流之紊流特性。本研究之量測水深介於4 mm與10 mm,降雨強度 I = 0 ~ 4 in/hr (101.6 mm/hr)、雨滴粒徑 d = 3 ~ 4 mm、底床坡度S = 0.1 ~ 1.0%,雷諾數則約介於200與6,000之間。 根據量測結果分析平均速度剖面,與壁定理及速度欠損律比較,並探討二維紊流強度與雷諾應力分佈、Darcy-Weisbach摩擦係數變化,邊界極端剪應力以及無因次主流向、垂直向流速與雷諾應力之機率分佈。就邊界極端剪應力而言,於光滑與漸變粗糙底床之降雨事件中,當雷諾數分別小於3,100與2,100時,邊界極端剪應力主要由降雨衝擊水層所造成。反之,當雷諾數分別大於3,100與2,100時,邊界剪應力受降雨之影響則不明顯。然而,粗糙底床則無明顯之雷諾數臨界門檻值。其次,將雷諾應力利用條件式取樣,細分成四個象限,分別探討無降雨與降雨情況下,舉升(ejection)與掃蕩(sweep)事件對總平均雷諾應力之貢獻。整體而言,降雨時近床區之光滑、漸變粗糙與粗糙底床試驗資料,其掃蕩事件對平均雷諾應力之貢獻大多超過舉升事件之貢獻。此外,透過迴歸分析,建立雷諾應力三、四階動差模式,及光滑床面之降雨與無降雨Darcy-Weisbach摩擦係數模式,以供未來降雨流場分析與模式應用之參考。 最後,以Gram-Chalier數學模式進行薄層水流機率密度之擬合。整體而言,無因次主流向、垂直向速度與雷諾應力之機率密度分佈,其模擬結果與實測資料均頗為一致。惟水流雷諾數較低時,模擬結果略受影響。zh_TW
dc.description.abstractSoil erosion by water is the detachment and transportation of soil particles through the action of the runoff and raindrop splash over the soil surface. For the past research of shallow rain-impacted flow, it was mainly emphasized on the effect of rainfall intensity on the shallow rain-impacted flows, and the effect of raindrop diameter was usually neglected. In this study, a 2-D Fiber-optic Laser Doppler Velocimety (FLDV) was used to investigate the flow characteristics of turbulence for the conditions with and without rainfall over smooth, transitionally rough and fully rough beds. The ranges of the flow and rainfall parameters were : flow depth 4 to 10 mm, rainfall intensity 0 to 4 in/hr, bed slope 0.1% to 1.0%, and Reynolds number 200 to 6,000. The measured mean velocity profiles were compared with the law of the wall and the velocity defect law. The two-dimensional turbulence intensities, the distribution of Reynolds stress, the Darcy-Weisbach friction factor, the extreme boundary shear stress, and the probability density functions of the dimensionless longitudinal and vertical velocities for the shallow rain-impacted flow were also analyzed. For the extreme boundary shear stress, it was found that the boundary shear stress is mainly induced by the raindrop impact when the Reynolds number Re is less than about 3,100 and 2,100 over smooth and transitionally rough beds, respectively. In contrast, for Re greater than about 3,100 and 2,100, the raindrop impact is insignificant at the near boundary region, and the turbulent shear stress is dominated by the channel flow turbulence. Nevertheless, there is no evident threshold value in fully rough bed. Furthermore, the signals obtained from FLDV at various locations were conditionally sampled and sorted into four quadrants of the , plane to investigate the contributions of different events (especially ejection and sweep events) to Reynolds stress. In general, for the cases with rainfall, it was found that the contribution of the sweep events exceeded that for the ejection events near the channel bed. With regard to the Reynolds stress, the regression models were developed to predict the vertical distributions of the skewness and kurtosis of Reynolds stress for the rain-impacted flows. In addition, a model was also developed to predict the Darcy-Weisbach friction factor with consideration of both the rainfall intensity and the raindrop diameter. Finally, the dimensionless probability densities of the longitudinal and vertical velocities, and the Reynolds stress were simulated by the Gram-Chalier model. It was found that, in general, the results were consistent with the FLDV measurements except for the cases with lower Reynold numbers.en_US
dc.description.tableofcontents中文摘要............................................I 英文摘要............................................III 目錄................................................V 圖目錄..............................................IX 表目錄..............................................XVI 相片目錄............................................XVIII 符號說明............................................XIX 第一章 緒論.........................................1 1-1 研究動機........................................1 1-2 研究目的........................................2 1-3 本文組織........................................3 第二章 文獻回顧.....................................5 2-1 平均流速分佈....................................5 2-1.1 無降雨平均流速分佈..........................5 2-1.2 降雨平均流速分佈............................12 2-2 理論床面........................................14 2-3 紊流強度........................................16 2-4 相關係數分佈....................................18 2-5 達西摩擦係數....................................19 2-6 邊界剪應力計算..................................21 2-7 雷諾應力........................................23 2-8 雷諾應力之舉升與掃蕩事件........................25 第三章 人工降雨器與二維FLDV實驗設備.................27 3-1 實驗設備........................................27 3-1.1 循環水槽....................................27 3-1.2 二維FLDV系統................................30 3-1.3 降雨器及其他設備............................34 3-1.4 粗糙床面設置方式............................36 3-2 實驗方法與佈置..................................38 3-2.1 實驗方法....................................38 3-2.2 實驗佈置....................................44 3-3 正式實驗........................................45 3-4 實驗條件........................................47 第四章 二維光滑與加糙流場分析.......................53 4-1 無降雨與降雨之速度剖面..........................53 4-2 紊流強度分佈....................................59 4-3 無降雨與降雨之流速與剪應力機率密度..............75 4-3.1 主流向流速機率密度函數......................75 4-3.2 垂直向流速機率密度函數......................78 4-3.3 雷諾應力機率密度函數........................81 4-4 雷諾應力相關係數之分佈..........................84 4-5 降雨與無降雨達西摩擦係數之比較..................87 4-6 降雨與無降雨之雷諾應力動差......................92 4-6.1 雷諾應力之一階動差(平均值)..................93 4-6.2 雷諾應力之二階動差(標準偏差)................96 4-6.3 雷諾應力之三階動差(偏態)....................98 4-6.4 雷諾應力之四階動差(峰度)....................102 4-7 降雨與無降雨之底床極端剪應力....................105 4-8 雷諾應力之條件式取樣............................111 第五章 機率密度分佈模擬.............................121 5-1 機率密度分佈之理論推導..........................121 5-1.1 Gram-Charlie近似pdf及相關理論...............121 5-1.2 雷諾應力pdf之估算...........................127 5-2 機率密度分佈之模擬..............................131 5-2.1 光滑底床....................................131 5-2.2 漸變粗糙底床................................143 5-2.3 粗糙底床....................................149 5-3 數學模式之應用..................................156 第六章 結論與建議...................................165 6-1 結論............................................165 6-2 建議............................................169 參考文獻............................................171 附錄A...............................................176zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200906405300en_US
dc.subjectraindrop impacten_US
dc.subject雨滴打擊zh_TW
dc.subjectturbulent shear stressen_US
dc.subjectDarcy-Weisbach friction coefficienten_US
dc.subjectprobability density functionen_US
dc.subject紊流剪應力zh_TW
dc.subject達西摩擦係數zh_TW
dc.subject機率密度函數zh_TW
dc.title降雨淺水流邊界剪應力之隨機性與機率分佈zh_TW
dc.titleRandomness and probability distribution of boundary shear stress for shallow rain-impacted flowen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.grantfulltextnone-
Appears in Collections:土木工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.