Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16078
標題: 單對稱樑扭矩斷面性質之數值化分析
Numerical Approach for Torsional Properties of Monosymmetric Steel Girders
作者: 徐暐亭
Hsu, Wei-Ting
關鍵字: Lateral- Torsional Buckling;側向扭轉挫屈;elastic moment;singly symmetric girder;warping;warping constant;coefficient of monosymmetry;彈性彎矩強度;單對稱樑;翹曲;翹曲常數;單對稱係數
出版社: 土木工程學系所
引用: 1. AISC, Allowable Stress Design Manual of Steel Construction, 9th Edition, American Institute of Steel Construction, Chicago, Illinois. (1989) 2. AISC, Load and Resistance Factor Design Manual of Steel Construction, 1st Edition, American Institute Steel Construction, Chicago, Illinois. (1986) 3. AISC, Load and Resistance Factor Design Manual of Steel Construction, 2nd Edition, American Institute Steel Construction, Chicago, Illinois. (1993) 4. AISC, Load and Resistance Factor Design Specification for Structural Steel Buildings, 3rd Edition, American Institute of Steel Construction, Inc., Chicago, Illinois. (1999) 5. AISC, Design Specification for Structural Steel Buildings, 13th edition, American Institute of Steel Construction, Inc., Chicago, Illinois. (2005) 6. Umanskii, A.A., “Spatial Structures”, Moscow. (1948) 7. Federhofer, K., “Buckling Stability of a Curved Girder with a Simply-Symmetrical, Thin-Walled and Open Cross-Section under Uniform Radial Loading”, Russian, Osterreichisches Ingenieur-Archive, Vol.4, pp. 27~44. (1950) 8. Vlasov, V.Z., “Thin-Walled Elastic Beams”, Second Edition; ational Science Foundation, Washington D.C. (1961) 9. Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability, McGraw- Hill, NewYork, Chap. 6. (1961) 10. Salmon, C. G. and Johnson, J. E., “Steel Structures Design and Behavior, ” Emphasizing Load and Resistance Factor Design, Fourth Edition, Chap. 8. (1996) 11. 陳伯真與胡毓仁, “ 薄壁結構力學 ”,上海交通大學出版社出版。(1998) 12. Lee, G. C., “A Survey of Literature on the Lateral Instability of Beams”, Welding Research Council Bulletin Series No. 63, pp. 50-59. (1960) 13. Johnson, B. G., Guide to Stability Design Criteria for Metal Structures (SSRC), Wiley, New York, pp. 95-115. (1976) 14. Trahair, N. S., The Behaviour and Design of Steel Structures, Chapman and Hall, London. (1977) 15. Galambos, T. V., Guide to Stability Design Criteria for Metal Structures, Wiley, New York, pp. 155-188. (1988) 16. Bleich, F., Buckling Strength of Metal Structures, McGraw-Hill, New York, Chap. 4. (1952) 17. Salvadori, M. G., “ Lateral Buckling of I-Beams,” Transactions, ASCE, Vol. 120, pp. 1165-1167. (1955) 18. Pi, Y. L. , Trahair, N. S. , and Rajasekaran, S., “Energy Equation for Beam Lateral Buckling,” Journal of the Structural Division, ASCE, Vol. 118, No. 6, pp. 1462-1477. (1992) 19. Morteza, A. M. T., and Erin R. R., “Energy equations for elastic flexural–torsional buckling analysis of plane structures,” Thin-Walled Structures, Vol. 47, Issue 4, pp. 463-473. (2009) 20. Galambos, T. V., Structural Members and Frames, Prentice-Hall, Englewood Cliffs,New Jersey, pp. 80-158. (1968) 21. Vinnakota, S., “Inelastic Stability of Laterally Unsupported Beams,“ Computers and Structures, Vol. 7, No.3, pp. 15-27. (1977) 22. Barsoum, R. S. and Gallagher, R. H., “Finite Element Analysis of Torsional and Flexural-Torsional Stability Problems,” International Journal of Numerical Methods, Vol. 2, pp. 335-352. (1970) 23. Powell, G. and Klingner, R., “Elastic Lateral Buckling of Steel Beams, “ Journal of the Structural Division, ASCE, Vol. 96, No. ST9, pp. 1919-1932. (1970) 24. Lee, S. C. amd Yoo, C. H. “Strength of plate girder web panels under pure shear”, Journal of Structural Engineering v124 n2 ASCE , pp 184-194.(1998) 25. Andrade, A., Camotim, D. and Dinis, P. B., “Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA,” Computers & Structures, Vol. 85, Issues 17-18, pp. 1343-1359. (2007) 26. Moon, J., Yi, J.W., Choi, B. H. and Lee, H. E., “Lateral–torsional buckling of I-girder with corrugated webs under uniform bending,” Thin-Walled Structures, Vol. 47, Issue 1, pp. 21-30. (2009) 27. Hechtman, R. A. and Hattrup, J. M., “Lateral Buckling of Rolled Steel Beams,” Journal of the Engineering Mechanics Division, ASCE, Vol. 81, No. 797, pp. 797-830.(1955) 28. Hancock, G. J., “Local Distortional and Lateral Buckling of I-Beams,” Journal of the Structural Division, ASCE, Vol. 104, No. ST11, pp. 1787-1800. (1978) 29. Kubo, M. and Fukumoto, Y., “Lateral Torsional Buckling of Thin-Walled I-Beams,” Journal of the Structural Division, ASCE, Vol. 114, No. ST 4, pp. 841-855. (1988) 30. Pi, Yong L. and Trahair, N. S., “Prebuckling Deflections and Lateral Buckling I-Theory,” Journal of the Structural Division, ASCE, Vol. 118, No. 11, pp. 2949-2965. (1992) 31. Anderson, J. M. and Trahair, N. S., “Stability of Monosymmetric Beams and Cantilever,” Journal of the Structural Division, ASCE, Vol. 98, No. ST1, pp. 269-286. (1972) 32. Nethercot, D. A., “Elastic Lateral Buckling of Beam,” Beams and Beam Columns-Stability in Strength (ed. R. Narayanan). Barking, Essex, England: Applied Science Publishers. (1983) 33. Kitipornchai, S., Wang, C. M. and Trahair, N. S., “Buckling of Monosymmetric I-Beam Under Moment Gradient,” Journal of Structural Engineering, ASCE, 112, 4, pp. 781-799. (1986) 34. Wang, C. M. and Kitipornchai, S., “Buckling Capacities of Mono-symmetric I-Beam,” Journal of Structural Engineering. ASCE, 112, pp.2373-2391. (1986) 35. Kitipornchai, S. and Wong-Chung, A. D., “Inelastic Buckling of Welded Monosymmetric I-Beam,” Journal of Structural Engineering, 113, 4, pp. 740-756. (1987) 36. Ellifritt, D. S., Wine, G., Sputo, T. and Samuel, S., “FlexuralStrength of WT Sections,” The Engineering Journal, AISC, Second Qurater, pp. 67-74. (1992) 37. Clark, J. W. and Hill, H. N., “Lateral Buckling of Beams,” Journal of the Structural Division, ASCE, Vol. 86, No. ST7, pp. 175-196. (1960) 38. Kitipornchai, S. and Trahair, N. S., “Buckling Properties of Mono-symmetric I-Beam,” Journal of the Structural Division, ASCE, 106, ST5, pp. 941-957. (1980) 39. Nethercot, D. A. and Rockey, K. C., “A Unified Approach to the Elastic Lateral Buckling of Beams”, The Structural Engineer, Vol.49, No. 7, London, British, pp. 321-330. (1971) 40. Kriby, P. A. and Nethercot, D. A., Design for Structural Stability, John Wiley and Sons, New York, pp. 95-115. (1979) 41. Chen, W. F. and Lui, E. M., Structural Stability, Elsevier Science Publishing Company, New York, pp. 307-380. (1988) 42.
摘要: 
單對稱鋼樑斷面的各種性質之計算以及分析較為煩雜,常見斷面如WC組合斷面與SC組合斷面為經濟之單對稱斷面,此類斷面特性為增加受壓面積以便提供較佳之抗彎矩以及穩定性。單對稱斷面之缺點為受到扭轉時,難以分析扭轉造成之翹曲剪應力以及翹曲正向應力,評估斷面之理論強度根據翹曲常數 、單對稱係數 以及扭力常數 等牽涉到複雜積分運算。現有設計規範沒有提供適當公式作為計算彎矩強度,僅以雙對稱I-型樑以及單對稱I-型樑相關之簡化公式評估單對稱斷面之彈性彎矩強度。
本研究整理單對稱樑之理論彈性與非彈性公式,將翹曲常數 、單對稱係數 以及扭力常數 之複雜積分式簡化並提出數值化公式,以利評估單對稱斷面之彈性理論強度,檢討現有ASD、LRFD以及2005 AISC等設計規範之相關公式來源。提供常見之WC與SC組合斷面之翹曲常數 、單對稱係數 、扭力常數 以及設計相關表值供使用,進而評估現有規範與理論值之差異。結果顯示規範有明顯低估部分組合斷面之彈性理論彎矩強度,最新之2005 AISC設計規範之WC與SC斷面彈性彎矩之低估誤差介於8 %至25 %之間。
本研究提供設計WC以及SC之組合斷面彈性彎矩計算之相關數值,並根據誤差提出簡化後之規範可放大之係數,作為業界設計組合斷面之參考,提高其設計的經濟性以及合理性。

It is a common practice in crane runway girders to place a cap channel over the top flange of a W- or S-shape. The built-up WC (W-shape with Cap Channel) or SC (S-shape with Cap Channel) sectionhas been proven to be efficient and economical for the use of crane runway girders. However, the theoretical elastic moment calculation for WC/SC section is not an easy task and the difficulty comes from some of the evaluation of torsion properties including the warping constant (Cw) and coefficient of monosymmetry (βx), the torsion constant (J). The current AISC specifications provide no theoretical formulas for the elastic critical moment of WC/SC girders, but do give the approximate formulas (without the use of Cw and βx) which were actually derived from a singly symmetric I-shaped section as briefly described in this study. Based on this study, the AISC approximate formulas underestimate the elastic critical moments of WC/SC girders.
This study summarizes the theoretical formulas, which involve mathematical integrations, for the design use of WC/SC girders. These mathematical formulas can be rewritten in terms of numerical expressions by realizing that the section is made up of thin-walled plate elements. The theoretical and AISC formulas for girders with singly symmetric section are summarized and compared. The torsional properties for the theoretical analysis of WC/SC girders are computed and tabulated for practical purposes. The AISC moment related parameters for the design use of WC/SC girders are also computed and tabulated. This new set of design parameters and properties for WC/SC girders will enable practicing engineers to perform more in-depth evaluation in their routine deigns. Finally, a rational but simplified approach is proposed and presented for the use of all WC/SC girders being listed in the ASD and LRFD design manuals.
URI: http://hdl.handle.net/11455/16078
其他識別: U0005-2306200913532800
Appears in Collections:土木工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.