Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16085
標題: 卵礫石土之彈塑變形特性研究
Elasto-Plastic Deformation Characteristics of Gravelly Soils
作者: 何玉玲
Ho, Yu-Ling
關鍵字: gravelly soils;卵礫石土;elastio-plastic deformation;彈塑變形
出版社: 土木工程學系所
引用: 1.經濟部中央地質調查所,「臺灣地區陸上砂石資源調查與研究報 告」,中華民國經濟部,第一卷,第5頁,台北(1982)。 2.鄧屬予,「台灣卵礫石層的地質背景」,地工技術,第55期,第7 頁(1996)。 3.何春蓀,「台灣地質概論─台灣地質說明書」,中華民國經濟 部,台北,第85-89頁(1975)。 4.孫漢豪,「鯉魚潭水庫土石壩現地抗剪強度預估模式之研究」, 碩士論文,國立中興大學土木工程學系研究所,台中(1990)。 5.褚炳麟,「台灣地區麓山帶與台地礫石材料性質初步研究」,土 木水利季刊,第九卷,第二期,第73~86頁(1982)。 6.褚炳麟,「紅土礫石層之壓縮性與滲透性」,第二屆大地工程學 術研討會論文集,中壢,第159~172頁(1985)。 7.萬獻銘、陳淑華、呂仲泰,「林口台地紅土基本特性研究」,國 科會防災報告74-52A號,(1986)。 8.鄭文隆、程展國,「細料含量對紅土礫石之夯實與強度性質影響 研究」,國立台灣工業技術學院營建系大地工程組研究報告, (1983)。 9.Matheson, Gordon M.,“Relationship between Compacted Rockfill Density and Gradation”, Journal of Geotechnical Engineering, ASCE, Vol. 11, No. 12, pp. 1119-1124 (1986). 10.Varadarajan,A., Sharma, K.G., Venkatachalam,K. and Gupta, A.K., “Testing and Modeling Two Rockfill Materials”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.129, No.3 (2003). 11.Collorio Die neuen Talsperrendamme im Harz.Bautech-nik, 14, 707 (1936). 12.Leps, T. M. “Review of Shearing Strength of Rockfill” Journal ASCE, SMF Division , Vol. 96 Nos. SM4 pp.1159- 1170 (1970). 13.Breth, H.Die Bedeutung der hochwertigen Verdichtung rolliger Schuttmassen fur den Staudammbau. Wasserwirtshaft , 42, 367。-(1955).Erdbeton fur Staudamme. Baumaschine und Bartechnik , 2, 313 (1951- 52). Einige Bemerkungen uber die Standsicherbeitvon Dammen und Boschungen Bautechnik , 33, 9 (1956). 14.Nonveiller , E. Shear strength of coarse grained cohesionless materials. Proc. Yugoslav Society of Soil Mechanics and Foundation Engineering, No. 2, p.12-21 (1954). 15.Hlotz. W. G. and Gibbs, H. J. “Triaxial Shear Test on Pervious Gravelly Soils” Proceeding, American Society of Civil Engineers, January 1956, pp.1-22 (1956). 16.Zeller, J . and Wullimann, R. “ The Shear Strength of the Shell Materials for the Goschenenalp Dam, Switzerland”, Proceedings, 4th Conference on Soil Mechanics and Foundation Engineering, Vol. II, pp. 399- 404 (1957). 17.Schultz, E. “Large Scale Shear Tests” Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 1, pp. 193-199 (1957). 18.Marsal, R. J.., “Large Scale Testing of Rockfill Materials”, Proceedings of ASCE, Journal of Soil Mechanics and Foundation Division, Vol. 93, No. 2, pp. 27-43 (1967). 19.Fumagalli, E. “Test on Cohesionless Materials For Rockfill Dams” Proceeding of ASCE, Journal of the Soil Mechanics and Foundations Division Vol. SM. 1,pp.313- 330 (1969). 20.Marachi, N. Dean and Clarence K. Chan, and H. Bolton Seed,(1972) “Evaluation of Properties of Rockfill Materials” Journal, Vol. 98, No. SM1, pp.95-114. 21.Mogami, T. “Devolopment of the Mechanics of Granular Material in Janpan” Proceeding of 11th International Conference on Soil Mechanics and Foundation Engineering, 1977, Vol. pp 271-283 (1977). 22.Charles, J.A. and Watts, K.S., “The influence of confining pressure on the shear strength of compacted Rockfill”, Geotechnique 30 No. 4, pp. 353-367 (1980). 23.Zhang, Q. y. and Si, H. Y. “Shear Strength and Stress Strain Properties of Coarse Grain Soil” Proceeding of the Seventh Southeast Geotechnical Conference Hong- Kong. pp.931-945 (1982). 24.Marsal, R.J, “Mechanical Properties of Rockfill and Gravel Materials”, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering Mexico, Vol. 3, pp. 499-506 (1969). 25.Seed, H. B., “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquakes,” Journal of the Geotechnical Engineering Division. ASCE 105 (GT2) 201-255 (1979). 26.Marachi, N., “Strength and Deformation Characteristics of Rockfill Materials”, Ph. D Dissertation, University of California, Berkeley (1969). 27.Vesic, A.S. and Clough, G.W., “Behavior of Granular Materials under High Stresses”, Journal of Soil Mechanics and Foundation, ASCE, SM3, Vol.94, pp. 661~688 (1968). 28.Hall, E. B., and Gordon, B. B. “Triaxial testing using large scale high pressure equipment” ASTM Symposium, STP No. 361 (1963). 29.Marsal, R. J. “Large scale testing of rockfill materials” J. SMFE, ASCE, 93(2), 27-43 (1967). 30.Fumagalli, E. “Test on cohesionless materials for rockfill dams” J. SMFE, ASCE, 95(SM1), 313-332 (1969). 31.Marachi, N. D., Chan, C. K., and Seed, H. B. “Evaluation of properties of rockfill materials” J. SMFE, 98(1), 95-114 (1972). 32.Theirs, G. R., and Donovan, T. D. “Field density gradation and triaxial testing of large-size rockfill for Little Blue Run Dam” Laboratory shear strength of soil, ASTM, SPT 740, R. N. Yong and F. C. Townsend, eds., ASTM, 315-325 (1981). 33.Ansari, K. S., and Chandra, S. “How ought one to determine soil parameters to be used in the design of earth and rockfill dams” Proc., Indian Geotechnical Conf., New Delhi, India, 2, 1-6 (1986). 34.Mullenger, G. and Davis, R. O., “An unified yield criterion for cohesionless granular materials”, Int. J. for Numerical and Analytical Methods in Geomechanics, 5,285-294 (1981). 35.Gupta, A. K. “Constitutive modeling of rockfill materials” PhD thesis, Indian Institute of Technology, Delhi, India (2000). 36.Holtz, W. G.., and Gibbs, H. J., “Triaxial Shear Test on Pervious Gravelly Solis”, Journal of Soil Mechanics and Foundations Div., ASCE, Vol. 82, No. SM1, pp.867- 1~867-22 (1956). 37.Holtz, W. G., “Triaxial Shear Characteristics of Clayey Gravel Soil”, Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, Vol.1, pp 143 – 149 (1961). 38.Casagrande, A., “Hohe Staudamme”, Communication No.6 , Institute for Foundation Engineering and Soil Mechanics, Technische Hochschule, Vienna, Dec. pp. 32 (1965). 39.Bishop, W. G., “A Large Shear Box for Testing Sands and Gravels”, Proceedings of the 2nd International Conference on Soil (1984). 40.Marsal, R. J., “Soil Properties, Shear Strength and Consolidation”, Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Canada, Vol. 3, pp. 301~352 (1965). 41.Lee, K.L. and Seed, H. B., “Drained Strength Characteristics of Sands”, Journal of Soil Mechanics and Foundation, ASCE, SM6, pp. 117 42.Vesic, A.S. and Clough, G.W., “Behavior of Granular Materials under High Stresses”, Journal of Soil Mechanics and Foundation, ASCE, SM3, Vol.94, pp. 661~688 (1968). 43.Marachi, N.D., C.K. Chan, H.B. Seed, and J.M. Duncan, “Strength and Deformation Characteristics of Rockfill Material”, Department of Civil Engineering University of California, Berkeley, Calif. (1969). 44.Bishop, A.W., “The Strength of Soils as Engineering Materials,” Geotechnique, Vol.16, pp. 91 45.Leps, T.M., “Review of Shearing Strength of Rockfill”, Journal of ASCE, SMF Division, Vol.96, Nos.SM4, pp. 1159 46.Leps, T.M., “Review of Shearing Strength of Rockfill”, Journal of ASCE, SMF Division, Vol.96, Nos.SM4, pp. 1159 47.吳家城,「推石材料完整應力應變曲線模擬及抗剪強度包絡 線」,碩士論文,國立中興大學土木工程學系研究所,台中 (1992)。 48.吳偉康,「含水量對夯實礫石土強度影響之研究」,碩士論文, 國立台灣工業技術學院工程技術研究所,台北(1983)。 49.王耀賢,「築壩碎岩土之力學行為模擬」,碩士論文,國立台灣 科技大學營建工程技術學系研究所,台北(1993)。 50.林榮昌,「築壩碎岩土在不同級配模擬方式下之工程特性」,碩 士論文,國立台灣科技大學營建工程技術學系研究所,台北 (1993)。 51.沈崑章,「塑性指數對卵礫石土軸向壓縮及軸向伸張抗剪強度之 影響」,碩士論文,國立中興大學土木工程學系研究所,台中 (2002)。 52.楊晟豪,「卵礫石土之剪脹行為研究」,碩士論文,國立中興大 學土木工程學系研究所,台中(2003)。 53.林耀隆,「以改良式三軸儀器探討卵礫石土之剪脹行為」,碩士 論文,國立中興大學土木工程學系研究所,台中(2007)。 54.劉萌成,「應力路徑條件下堆石剪切特性大型三軸試驗研究」, 中國岩石力學與工程學報,第二十七卷,第一期,(2008)。 55.Hibbitt, Karlsson & Sorensen, Inc., “Abaqus theory manual” , v6.1, Hibbitt, Karlsson & Sorensen, Inc., US (2001). 56.Nova R.,“On the modeling of the mechanical effects of diagenesis and weathering”, Int. Society for Rock Mechanics News Journal, vol.4, 15-20 (1997). 57.DiMaggio, M. L. and Sandler, I. S., “Material model for granular soils”, J.Eng.Mech.Div.,ASCE,97,935-950 (1971). 58.Mullenger, G. and Davis, R. O., “An unified yield criterion for cohesionless granular materials.”, Int. J. for Numerical and Analytical Methods in Geomechanics, 5,285-294 (1981). 59.Desai, C. S., Somasundram, S. and Frantziskonis, G., “A hierarchical approach for constitutive modeling of geologic material.” Int. J. Rock Mech. Mining Sci. & Geomech. Abstr.,10,225-257 (1986). 60.Desai, C. S. and salami, M. R., “A constitutive model and associated testing for soft rock.” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24, 299-307 (1987a). 61.Desai, C. S. and Varadarajan, A., “A constitutive model for quasi-static behavior of rock salt.” J. of Geophysical Research, 92, 11445-11456 (1987b). 62.Gens, A. and Nova, R., “Conceptual bases for a constitutive model for bonded soils and weak rocks.” Geotechnical Engineering of Hard Soils-Weak rocks, A. Anagnostopoulos et al. (end), Balkema, Rotterdam, 485- 494 (1993). 63.Chen, W. F. and Han, D. J., “Plasticity for structural engineers.” Springer-Verlag, 606pp (1991). 64.Kulhawy, F. H., and Duncan, J. M., “Stresses and movements in Oroville dam.” J. SMFE, 98(7), 653-665 (1972). 65.Saboya, F. J., and Byrne, P.M., “Parameters for stress and deformation analysis of rockfill dams.” Can. Geotech. J., 30(4), 690-701 (1993). 66.Bishop, A.W., and D. J. Henkel, “The measurement of soil Properties in the tri-axial Test”, 2nd Edition, Edward Arnold (publishers) Ltd (1962). 67.陳國正,「應力路徑對砂土狀態參數之影響」,碩士論文,國立 台灣科技大學營建工程技術學系研究所,台北(1994)。 68.Ralph. Kuerbis and Yoginder P. Vaid, “Corrections for Membrane Strength in the Triaxial Test”, American Society for Testing and Materials, pp. 361-369 (1990). 69.李崇正,「三軸試驗結果之誤差及其修正方法」,中國土木水利 工程學刊,第六卷,第一期,(1994)。 70.何泰源、周允文、周永川、陳福勝,「卵礫石層隧道之開挖穩定 與地下水問題探討」,中華顧問公司工程司大地工程部(1999)。 71.財團法人中華顧問工程司,「東西向快速公路漢寶草屯線E407 線-細部設計報告」,台北(1993)。 72.“Earth Manual” A Water Resources Technical Publication, United States, Department of the Interior, Bureau of Reclamation, Denver, Colorado (1968). 73.Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part Ⅱ AASHTO, 11th Edition (1974). 74.Bishop, A.W., and Henkel, D.J., “The Measurement of Soil Properties in Triaxial Test”, 2nd Edition, Edward Arnold (Publishers) Ltd. (1976). 75.洪如江,「土力學試驗」,科技圖書股份有限公司,(1998)。 76.Alfreds R. Jumikis, “ROCK MECHANICS”,虹橋書店, (1980)。 77.翁孟嘉,「麓山帶砂岩之力學特性及其與微組構關係研究」,博 士論文,國立台灣大學土木工程學系研究所,台北(2002)。 78.林志穎,「粒狀土壤的剪脹及膠結性質」,博士論文,國立成 功大學土木工程學系研究所,台南(2003)。
摘要: 
本研究以八卦山卵礫石土為試料,並將通過#40篩之土壤分別以2種不同PI值之細粒料取代,再利用自行發展並製作之改良式大型三軸壓縮/伸張試驗儀,進行室內大型三軸軸向排水式加壓-解壓試驗,以探討不同塑性程度及不同圍壓下卵礫石堆積層之抗剪強度特性及真彈性模數與變形模數之差異性。最後,本研究綜合歸納試驗結果進一步探討卵礫石土之彈塑變形特性,以作為未來建構卵礫石土組成律之基礎。經由試驗與分析結果顯示:
(一) 卵礫石土之抗剪強度特性
(1)當試體之細料塑性程度為0時,其Mohr-Coulomb破壞準則之凝聚力 近似於零。此外,細料之PI值愈大時,試體之凝聚力 也愈大;反之有效內摩擦角 則愈小。(2)在相同圍壓下,高塑性試體之破壞應變將高於低塑性試體之破壞應變。(3) 無論高塑性或低塑性試體,真彈性模數及變形模數皆會隨著圍壓之增加而增加,且高塑性試體之變形模數較低塑性試體之變形模數為小;高塑性卵礫石土之真彈性模數會隨著反覆加壓-解壓試驗的次數增加而略為遞增;反之,低塑性卵礫石土之真彈性模數則會隨著反覆加壓-解壓試驗的次數增加而略為遞減。
(二) 卵礫石土之彈塑變形特性
(1)隨著剪應力之增加,初始剪應變會呈線性增加,直至剪應力接近破壞強度時,試體始逐漸有大量剪應變產生,且剪力模數會隨著圍壓之增加而有增高之趨勢。(2)卵礫石土之剪應力與體積應變存有偶合行為,在低剪應力時,卵礫石土首先會呈現壓縮行為,隨著剪應力之增加,壓縮行為逐漸轉換為膨脹行為,當接近破壞強度時,則會有大量膨脹變形產生。(3)彈性變形方面:隨著剪應力之增加,兩組模擬試體之彈性剪力模數及彈性體積模數皆會呈一線性關係,且彈性剪力模數及彈性體積模數皆會隨著圍壓之增加而有增高之趨勢。(4)塑性變形方面:在剪應力作用下,所造成之塑性剪應變增量,一開始並不顯著,但當趨近於破壞時(正規化剪應力值約達0.7-0.9),則會產生大量之塑性剪應變增量。兩組模擬試體在低圍壓下,體積變形皆呈現出較大之塑性體積應變增量,且隨著圍壓之增加,塑性體積應變增量會逐漸下降。(5)兩組模擬試體之塑性流角度β會隨著正規化剪應力之增加而逐漸遞增,當正規化剪應力比值增至約0.7-0.9,亦即達到塑性剪脹門檻時,則表示試體會由剪縮行為轉變為剪脹行為,隨後塑性流角度β則會隨著正規化剪應力值之增加,β則維持不變,直到破壞為止。(6)關於塑性剪脹門檻值之變化,分析結果顯示塑性剪脹門檻比值會隨著圍壓之增加,而呈現增高之趨勢,意謂著塑性剪脹行為會隨著圍壓愈高,愈不易發生。(7)根據塑性流分佈情形,兩組模擬試體塑性流之流動方向皆會隨著剪應力之增加而呈現逆時針旋轉之趨勢,於終止時並未與Drucker-Prager破壞包絡線正交,此現象顯示卵礫石土之塑性應變增量可能符合非諧和流動準則(non-associated folw rule)。(8)藉由試驗分析結果計算兩組模擬試體之膨脹角皆會隨著圍壓之增加而遞增,且PI=0試體之平均膨脹角(約-4.6°)較PI=22試體之平均膨脹角(約-3.4°)大,亦即顯示PI=0試體在受剪破壞時,會呈現較明顯之膨脹行為。
URI: http://hdl.handle.net/11455/16085
其他識別: U0005-2307200918051900
Appears in Collections:土木工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.