Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChen, Wei-Chengen_US
dc.identifier.citation1. Ingalls, M.N., (1989), ”On-Road Vehicle Emission Factors from Measurements in a Los Angles Area Tunnel”, The 82nd Annual Meeting & Exhibition of the AWMA. 2. Pierson, W.R., Gertler, A.W., and Bradow, R.L., (1996), “Real-World Automotive Emissions Summary of Studies in the Fort Mchenry and Tuscaroro Mountain Tunnels”, Atmospheric Environment, Vol. 30, No. 12. 3. 陳煥文,林志仁,許逸群,蔡俊鴻,(1997),”以隧道實驗推估車輛氣狀污染物排放係數”,第十四屆空氣污染控制技術研討會。 4. 袁中新,洪崇軒,施志恆,(1997),”高雄市車行地下道空氣污染現況調查與分析”,第十四屆空氣污染控制技術研討會。 5. 洪崇軒,袁中新,施志恆,袁菁,吳名洋,(1998),”高雄市車行地下道空氣品質特性研究”,第十五屆空氣污染控制技術研討會。 6. B. Broderick, U. Budd1, B. Misstear, D. Ceburnis, S.G. Jennings, (2003), “Modelling CO Concentrations Under Free-Flowing and Congested Traffic Conditions in Ireland”, 9th Int. Conf. on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes. 7. ECE, 2000: Council Directive 2000/69/EC of the European Parliament and of the Council of 16 November 2000 relating to limit values for benzene and carbon monoxide in ambient air, O.J.E.C. L 313/12 13.12.2000 8. Joseph Levitin, Jari Härkönen, Jaakko Kukkonen and Juha Nikmo, (2003), “Evaluation of the CALINE 4 and CAR-FMI Models Against the Data from a Roadside Measurement Campaign”, 9th Int. Conf. on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes. 9. Kate Ellis, Christine McHugh, David Carruthers & Amy Stidworthy,”Comparison of ADMS-Roads, CALINE4 and UK DMRB Model Predictions for Roads”, Cambridge Environmental Research Consultants Ltd, May2001 10. Wei Tang , Alan Huber, Brian Bell&Walter Schwarz,” Application of CFD Simulations for Short-Range Atmospheric Dispersion Over Open Fields and Within Arrays of Bulidings”, National Research Council Research Associate at National Exposure Research Laboratory,US Environmental Protection Agency, RTP, NC ,Feb,2006 11. CALINE 4-A Dispersion Model for Predicting Air Pollutant Concentrations near Roadways. 12. G..T. Csanady ,Turbulent Diffusion in the Environment, D. Reidel Publishing Company,1972 13. Kenneth Wark, Cecil F. Warner, Wayne T. Davis. ,Air pollution :its origin and control, Menlo Park, Calif. :Addison-Wesley ,c1998. 14. Fluent Inc, 2005. FLUENT 6.2 User’s Guide.Fluent Inc, Lebanon, NH. 15. 工業技術研究院,(2003),「機車污染排放總量推估模式建立及排放量計算」專案工作計畫。 16. 工業技術研究院,(2003),「汽車污染排放總量推估模式建立及排放量計算」專案工作計畫。 17. 車輛研究測試中心,(2004) 「柴油及替代清潔燃料引擎車輛污染排放總量推估」專案工作計畫。 18. 交通部統計處,「台閩地區機動車輛登記數」,交通部網站資料。 19. 中鼎公司,(1999),「空氣污染總量管制制度推行先期作業及空氣污染物排放量推估標準方法建立」,EPA-88-FA31-03-1059。 20. 中鼎公司,(1999),「空氣污染總量管制制度推行先期作業及空氣污染物排放量推估標準方法建立」期末報告,環保署委託計畫,EPA-88-FA31-03-1059。 21. 交通統計要覽,(2004),,交通部統計處網站。zh_TW
dc.description.abstract本文主要分為兩個部份,第一部分採用路邊污染物濃度來驗證車輛污染排放模式,並以CALINE4模式來執行路邊污染物濃度計算,先以台北市大同測站的資料進行比對,該測站的車流量以機車與汽車為主,比對結果發現CO與NO2濃度變化模擬結果與量測結果相當一致,之後共進行11個點次的濃度驗證,機車驗證結果較良好地點為台北市桂林路,汽車驗證的結果則以八卦山隧道較理想,柴油車驗證結果較良好的地點為高雄市小港區新生路。 第二部分主要以CFD來模擬污染物在大氣中的擴散,以探討車輛排氣對道路兩旁空氣品質的影響。本研究分為三種情況來探討,第一種為點源排放,相當於靜止中的車輛排氣,例如紅燈停等的狀況。第二種為開放地區有限長度的線源排放,相當於移動中的車輛排氣,例如高速公路或快速道路兩旁。第三種為兩側受建築物限制,且有限長度的線源排放,相當於市區中移動的車輛排氣。 本研究以FLUENT來計算車輛排氣中的CO在大氣中擴散的情形,計算結果顯示,當點排放源強度為0.25g/s時,在排放源正下風處30公尺最高濃度點發生在地面上,大約為9 ppm,橫向擴散距離最遠達到6公尺,較高斯模式所預測的擴散範圍窄。在空曠地區,當線排放源的強度為0.0011 g/m-s,在下游30 m的地面上濃度大約為0.30 ppm。本研究並以實際的路況來進行模擬,選擇的路段為高雄市小港區新生路,由實測的交通流量及風速來推估,結果在路邊1 m處的CO濃度為0.93 ppm。zh_TW
dc.description.abstractThis paper is composed of two parts. The first part adopts the roadside concentrations comparison method to verify the vehicle emission model. The pollutant dispersion model Caline 4 was used to evaluate the validity of the vehicle emission factors. The measured roadside air quality data obtained from Datong Monitoring Station were first used for comparison. Results of comparison showed that the predicted data and the measured data varied consistently. Measured data at another 11 sites were then used for comparison. The data at Guilin Rd. were fairly good for motorcycle test. The data at Bagua Mt. tunnel matched well with automobile's emission factors. The data obtained at Kaoshung harbor were consistent with the Diesel vehicle's emission factors. The second part is a comparison of pollutant dispersion calculation using CFD tool with that obtained with Gaussian model. Three cases were studied in this paper. The first case is a point source dispersion, which is used to simulate stationary vehicles waiting in front of red light. The second case is a line source with finite length, which is used to simulate vehicles in motion. The third case is a confined line source, which is used to simulate vehicles moving in streets with high rise buildings in both sides. The commercial CFD code Fluent was used in this paper to carry out calculations. Results of calculations showed that in the case of point source, the maximum concentration occurred on the ground surface of about 9 ppm as the source strength is 0.25g/s. The transverse dispersion distance is about 6 m at the location downstream of 30 m. In an open area, the concentration on the ground surface at 30 m downstream is about 0.3 ppm as the source strength is 0.0011 g/m-s. A real case in kaoshung Siaokang Rd. was studied in this paper. The CO concentration was estimated to be 0.93 ppm according to the measured wind speed and the traffic flow.en_US
dc.description.tableofcontents第一章、緒論 1 (1.1)、研究目的 2 (1.2)、排放量推估模式驗證方式 2 (1.2.1)、實車驗證 2 (1.2.2)、濃度比對 3 (、隧道濃度比較法 3 (、路邊濃度比較法 4 (、監測站資料比較法 5 (1.3)、研究方法 5 (1.4)、文獻回顧 6 第二章、污染擴散模式 14 (2.1)、污染擴散模式簡介 14 (2.1.1)、高斯擴散模式為架構的模式 14 1. CALINE 4 14 2. CAR-FMI 15 3. ADMS-Roads 15 4. UK DMRB 16 (2.1.2)、計算流體力學模式 (computational fluid dynamics,CFD) 17 1. TAQM 17 2. FLUENT 18 (2.2)、 FLUENT模式 19 (2.2.1). 擴散方程式 19 (2.2.2). k-ε Model 22 第三章、路邊污染物濃度驗證 24 (3.1)、空氣品質監測點的選擇 25 (3.2)、 排放係數 26 (3.3)、 分析方法 28 (3.4)、 空品與車流量檢測結果以及驗證結果 29 (3.4.1)、 台北市資料初步分析 29 (3.4.2)、 台北市忠孝橋下 34 (3.4.3)、 大葉大學 41 (3.4.4)、 台北市桂林路艋舺三清宮測點 47 (3.4.5) 、台中市文心南路 51 (3.4.6)、台中市環中路 58 (3.4.7)、八卦山隧道口 64 (3.4.8)、台中市環中路第二次監測 70 (3.4.9) 省道76號漢寶-草屯東西向快速道路 76 (3.4.10)、省道台17線,4.5公里處 81 (3.4.11)、高雄市小港區新生路 89 (3.4.12)、高雄市前鎮區新生路嘉興冷凍(股)公司前 96 (3.5)、比較11個測點監測值與模擬值的相關係數 101 (3.6)、大氣穩定度對於計算值的敏感度 109 (3.7)、各監測點污染物濃度差異 109 (3.8)、不同排放係數比較 113 (3.9)、濃度驗證的結論 115 第四章、CALINE 4與FLUENT的比較 119 (4.1)、點源,高斯擴散模式與CFD比較 119 (4.1.1)、高斯擴散模式的點源分析模型簡介 119 (4.1.2)、 CFD的點源分析模型簡介 124 (4.1.3)、排放點源的比較結果 128 (4.2)、線源(無建築物限制) 高斯擴散模式與CFD比較 132 (4.2.1)、高斯擴散模式的線源分析模型簡介 133 (4.2.2)、CFD的線源分析模型簡介 137 (4.2.3)、排放線源的比較結果 141 (4.3)、以實測資料(高雄市小港區新生路測點)進行比較 142 (4.3.1)、實測資料小結 144 第五章、結論與未來展望 145 (5.1)、結論 145 (5.2)、未來研究方向 147 參考文獻 148 附錄A、CALINE 4模式說明 151 (A.1)、道路格點 151 (A.2)、CALINE 4 的物理模式 155 (A.3)、各污染格點之擴散 158 (A.4)、擴散係數 160 附錄B、五階多項式來計算高斯常態分佈 169 附錄C、地表粗糙度 170 附錄D、計算高斯模式下風處30公尺時的CO質量流率 171 附錄E、 FLUENT所假設的流出邊界條件 173 附錄F、空氣污染指標(PSI) 174 附錄G、空氣品質監測值 175zh_TW
dc.subjectatmospheric dispersion modelen_US
dc.subjectair pollutionen_US
dc.titleThe Verification of Vehicle Emission Models with the Gaussian Dispersion Model and CFD Modelen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.