Please use this identifier to cite or link to this item:
標題: 利用微流道生成膠珠與封裝顆粒之實驗研究
Droplet-based microfluidics for generation of alginate beads and encapsulation of particles
作者: 曾隆盛
Tseng, Lung-Sheng
關鍵字: microchannel;微流道;alginate;mixing;encapsulation;海藻酸;膠珠;混合
出版社: 機械工程學系所
引用: Bendib S., and Francais O., “Analytical study of microchannel and passive microvalve application to micropump simulator,” Proceedings of the SPIE, 2001, pp. 200-208. Bringer M. R., Gerdts C. J., Song H., Tice J. D., and Ismagilov R. F., “Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets,” Philosophical Transactions of the Royal Society A, Vol. 362, 2004, 1087-1104. Chen Y., and Kim H., “Preparation and application of sodium borohydride composites for portable hydrogen production,” Energy, Vol. 35, 2010, 960-963. Choi C. H., Jung J. H., Rhee Y. W., Kim D. P., Shim S. E., and Lee C. S., “Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device,” Biomed Microdevices, Vol. 9, 2007, 855-862. Cubaud T., and Mason T. G., “Capillary threads and viscous droplets in square microchannal,” Physics of Fluids, Vol.20, 2008, 053302. Edd J. F., Carlo D. D., Humphry K. J., Koster S., Irimia D., Weitz D. A., and Toner M., “Controlled encapsulation of single cells into monodisperse picoliter drops,” Lab Chip, Vol. 8, 2008, 1262-1264. Kalyanaraman M., Retterer S. T., McKnight T. E., Ericson M. N., Allman S. L., Elkins J. G., Palumbo A. V., and Keller M., Doktycz M. J., “Controlled microfluidic production of alginate beads for in situ encapsulation of microbes,” Biomedical Science and Engineering, Vol. 19, 2009, 1-4. Köster S., Angile F. E., Duan H., Agresti J. J., Wintner A., Schmitz C., Rowat A. C., Merten C. A., Pisignano D., Griffiths A. D., and Weitz D., “Drop-based microfluidic devices for encapsulation of single cells,” Lab Chip, Vol. 8, 2008, 1110-1115. Malloggi F.,Vanapalli S. A., Gu H., Ende D., and Mugele F., “Electrowetting-controlled droplet generation in a microfluidic flow-focusing device,” Journal of Physics: Condensed Matter, Vol 19, 2007, 462101. Shintaku H., Kuwabara T., Kawano S., Suzuki T., Kanno I., and Kotera H., “Micro cell encapsulation and its hydrogel-beads production using microfluidic device,” Microsyst Technol, Vol. 13, 2007, 951-958. Tan W. H., and Takeuchi S., “ Monodisperse alginate hydrogel microbeads for cell encapsulation,” Advanced Materials, Vol. 19, 2007, 2696-2701. Um E., Lee D. S., Pyo H. B., and Park J. K., “Continuious generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel,” Microfluidics and Nanofluidics, Vol. 5, 2008, 541-549. Xu T., Kincaid H., Atala A., and Yoo. J.J., “High-throughput production of single-cell microparticles using an linkjet printing technology,” Manufacturing Science and Engineering, Vol. 130, 2008, 021017-1-5. Yu L., Chen M. C. M., and Cheung K. C., “Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing,” Lab Chip, Vol. 10, 2010, 2424-2432. Zhang W., and He X., “Encapsulation of living cells in small (~100 mm) Alginate microcapsules by electrostatic spraying: a parametric study, ” Biomechanical Engineering, Vol. 131, 2009, 074515-1. Zhao L. B., Pan L., Zhange K., Guo S. S., Liu W.,Wang Y., Cheng Y., and Zhao X. Z., “Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation,” Lab Chip, Vol. 9, 2009, 2981-2986. 黃韋翔, 梳狀微流道內微顆粒分離實驗, 國立中興大學碩士論文, 2009. 陳煜壬, 利用流體聚焦生成微液滴與混合之實驗研究, 國立中興大學碩士論文, 2010.
本研究利用流體聚焦方式以油為連續相,而海藻酸鈉和氯化鈣兩種溶液為消散相,擠壓生成膠化狀的液珠,作為封裝細胞及檢測顆粒的平台。為了加強這兩種混合液體之膠化反應,於聚焦流道下游處設計S字型結構混合區。本實驗採用黃光微影方法製作母模,再灌入聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)進行翻模製作流道結構。實驗發現氯化鈣與海藻酸鈉濃度分別為50 mM與0.05 - 0.15 % (w/v)時,可以成功產生膠化液珠。但增加海藻酸鈉濃度至0.15% (w/v)則膠化過速,易阻塞流道。在固定消散相流率Qd = 0.005 ml/hr下,生成膠珠的直徑隨著連續相流率(Qc = 0.02 - 0.05 ml/hr)增加而變小(116 - 57 μm)。於S字型流道下游擴張流道寬度,控制流速可以將膠珠排列成不同的型態。本實驗亦利用膠化技術包覆螢光顆粒,並以螢光顯微鏡和倒立螢光顯微鏡觀察顆粒分佈情形。

This experimental study employs the flow-focusing micofluidics to produce gelatinized droplets containing calcium alginate to serve as a platform for future bio-sensing research. The microfluidics was made of Polydimethylsiloxane (PDMS) using the soft lithography technique. The sodium alginate solution (0.05-0.15% w/v) and calcium chloride (50 mM) solution were brought together with a Y-junction into the microfluidics as the dispersed phase. The dispersed fluids then encounter the continuous phase of oil at the cross junction to form the water-in-oil droplets. The cross junction is followed by a serpentine shaped channel in order to enhance the mixing and reaction of the two solutions inside the droplet. It is found that the droplet size ranging from 57 to 116 μm in diameter can be generated by decreasing the continuous phase flow rate from 0.05 to 0.02 ml/hr at a fixed dispersed phase flow rate of 0.005 ml/hr. The size of droplets remains nearly unchanged by the variation of sodium alginate concentration between 0.05-0.15% (w/v) but the higher concentration may become over gelatinized causing channel blockage. The alginate droplets can be aligned into one or multiple rows in an expanded channel region. The pattern of droplet alignment depends on the flow rate of continuous phase. The present technique was further used to generate and manipulate alginate droplets that encapsulated fluorescence particles.
其他識別: U0005-2207201112361600
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.