Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16140
標題: 粗骨材含量對混凝土力學行為之影響
Effect of Coarse Aggregate Content on Mechancical Properties of Concrete
作者: 潘昞熹
Pan, Ping-Hsi
關鍵字: coarse aggregate content;粗骨材含量;modulus of elasticity;ductility;splitting tensile strength;stress-strain curve;彈性模數;延展性;應力應變;柏松比;劈裂強度
出版社: 土木工程學系所
引用: 1.Standard Practice for Selecting Proportions for Normal, Heavy-Weight, and Mass Concrete, ACI 211.1 Report, ACI Manual of Concrete Practice, Part 1, 1997. 2.Zhong, C, Wang, A., Tang m., “The Filling Role of Pozzolanic Material”, Cement and Concrete Research, V. 26, No. 6, 1996, pp. 943-947. 3.ACI 363 R-92, “State-of-High-Strength Concrete”, ACI, Detroit, 1993. 4.Donza, H.; Cabrera, O.; and Irassar, E. F., “High-Strength Concrete with Different Fine Aggregate”, Cement and Concrete Research, V. 32, 2002, pp. 1755-1761. 5.Aitcin, P. C. and Neville, A., “High Performance Concrete Demystified”, ACI Concrete International, V. 15, No. 1, 1993, pp. 21~26. 6.Aïtcin, P. C. and Mehta, P. K., “Effect of Coarse-Aggregate Characteristic on Mechanical Properties of High-Strength Concrete”, ACI Materials Journal, V. 87, No. 2. March-April 1990, pp. 103-107. 7.Fuller W. B. and Thompson, J. E., “The laws of Proportioning Concrete”, Transactions of the American Society of Civil Engineers, Paper No. 1053, pp. 67-143. 8.Carrasquillo, R. L.; Nilson, A. H.; and Slate, F. O., “Properties of High Strength Concrete Subject to Short-Term Loads”, ACI Journal Proceedings, V. 78, No. 3 May-June 1981, pp. 171-178. 9.Carrasquillo, R. l.; Slate, F. O.; and Nilson, A. H., “Microcracking and Behavior of High Strength Concrete Subject to Short-Term Loading”, ACI Journal Proceedings, V. 78, No. 3 May-June 1981, pp. 179-186. 10.Braalbaki, W.; Benmokrane, B.; Chaallal, O.; and Aitcin, P. C., “Influence of Coarse Aggregate on Elastic Properties of High-Performance Concrete”, ACI Materials Journal, V. 88, No. 5. Sep.-Oct. 1991, pp. 499-503. 11. Baalbaki, W.; Aïtcin, P. C.; and Ballivy, G., “On Predicting Modulus of Elasticity in High-Strength Concrete”, ACI Material Journal, V. 89, No. 5, Sep.-Oct. 1992. pp. 517-520. 12.“CEB-FIP Model Code 90”, CEB-FIP, 1993, pp.34-40. 13.Mansur, M. A.; Wee, T. H.; and Chin, M. S., “Derivation of the Complete Strain-Stress Curves for Concrete in Compression”, Magazine of Concrete Research, V. 49, No.173, 1995, pp. 289-290. 14.Almusallam, T. H. and Alsayed, S. H., “Stress-Strain Relationship of Normal, High-Strength, and Lightweight Concrete”, Magazine of Concrete Research, V.47, No. 170, March 1995, pp. 39-44. 15.Iravani, S., “Mechanical Properties of High-Performance Concrete”, ACI Material Journal, V. 93, No. 5, Sep.-Oct. 1996, pp. 416-426. 16.Issa, S. A.; Islam, M. S.; Issa, M. A.; Yousif, A. A.; and Issa, M. A., “Specimen and Aggregate Size Effect on Concrete Compressive Strength”, Cement, Concrete, and Aggregates, CCAGDP, V. 22, No. 2, Dec. 2000, pp. 103-115. 17.Wu, K. U.; Chen, B.; Yao, W.; and Zhang, D., “Effect of Coarse Aggregate Type on Mechanical Properties of High-Performance Concrete”, Cement and Concrete Research, V. 31, 2001, pp. 1421-1425. 18.陸景文、詹穎雯、陳振川,“台灣地區混凝土抗壓強度與彈性模數特性研究”,中國土木水利工程學刊,第十四卷,第三期,民國91年,pp. 371-379。 19.Asbridge, A. H.; Page, C. L.; and Page, M. M., “Effects of Metakaolin, Water/Binder Ratio and Interfacial Transition Zones on the Microhardness of Cement Mortars”, Cement and Concrete Research, V. 32, 2002, pp. 1365-1369. 20.陳金剛,“自充填混凝土之力學性質”碩士論文,國立中興大學土木工程研究所,民國92年。 21.Akcaoglu, T.; Tokyay, M.; and Celik, T., “Effect of Coarse Aggregate Size and Matrix Quality on ITZ and Failure Behavior of Concrete Under Uniaxial Compression”, Cement and Concrete Composites V. 26, 2004, pp. 633-638. 22.林士平,“不同流動性混凝土之圍束行為” 博士論文,國立中興大學土木工程研究所,民國94年7月。 23.詹簦瑋,“高流動性混凝土力學性質之探討” 碩士論文,國立中興大學土木工程研究所,民國97年。 24.Shkolnik, I. E., “Influence of High Strain Rates on Stress–Strain Relationship, Strength and Elastic Modulus of Concrete”, Cement and Concrete Composites, V. 30, 2008, pp. 1000-1012. 25.Pfeifer, D. W., “Sand Replacement in Structural Lightweight Concrete-Splitting Tensile Strength”, ACI Journal Proceedings, V. 64, No. 7, July 1967, pp. 384-392. 26.Carino, N. J. and Lew, H. S., “Re-examination of Relation Between Splitting Tensile and Compressive Strength of Normal Concrete”, ACI Journal, V. 79, No. 23, May 1982, pp. 214-219. 27.Zain, M. F. M.; Mahmud, H.B.; Ilham, A.; and Faizal, M., “Prediction of Splitting Tensile Strength of High-Performance Concrete”, Cement and Concrete Research, V. 32, 2002, pp. 1251-1258. 28.Kent, D. C.; and Park, R., “Flexural Members with Confined”, Journal of the Structural Division, V. 97, ST7, July 1971, pp. 1969-1990. 29.ACI 318, “Building Code Requirements for Structural Concrete(ACI 318-08)and Commentary(ACI 318-08)” , American Concrete Institute, 2008, 465 pp. 30.“Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression ”, ASTM, C 469, 1994. 31.黃兆龍,“混凝土性質與行為” 詹氏書局,民國86年,1132 pp. 32.Hatano, T., Tsutsumi H., “Dynamical compressive deformation and failure of concrete under earthquake load“ , Reprints I WCEE, July 1960. 33.劉銘龍,“中強度高性能混凝土(TAICON)之力學性質研究” 碩士論文,國立中興大學土木工程研究所,民國90年7月。 34.“Compressive Strength of Cylindrical Concrete Specimens ”, ASTM, C 39, 1994. 35.“Splitting Tensile Strength of Cylindrical Concrete Specimens ”, ASTM, C 496, 1994. 36.Zielinski, A. J. and Reinhardt, H. W., “Stress-Strain Behavior of Concrete and Mortar at High Rates of Tensile Loading”, Cement and Concrete Research, V. 12, 1982, pp. 309-319
摘要: 
本研究主要探討混凝土在不同粗骨材含量時力學行為之影響。試驗共製作兩種強度(30 MPa )及(40 MPa )四種粗骨材含量(965 kg/m3 )、(935 kg/m3 )、(906 kg/m3 )及(877 kg/m3 )的混凝土圓柱試體 ,試驗之變數為混凝土之強度和粗骨材含量、試驗之項目則為應力-應變、彈性模數、延展性、劈裂強度和柏松比。試驗結果如下:
1.混凝土的強度愈高和粗骨材含量越少則應力-應變曲線下降段延展性會變差。
2.本研究中混凝土彈性模數與ACI 318-08預測式之比值在0.83到0.90之間,較ACI 318-08低。
3.本研究中混凝土柏松比要在粗骨材含量大於906 kg/m3 以上時,其高強度與低強度混凝土之柏松比才有明顯的差異。
4.本研究中混凝土劈裂強度與粗骨材含量呈反比。
5.本研究中並推導與粗骨材含量有關的混凝土受最大應力時之應變預測式、應力-應變曲線預測式、彈性模數預測式、延展性預測式和劈裂強度預測式。

The purpose of this study is to investigate the effect of coarse aggregate content on mechanical properties of concrete. The parameters included the concrete strength (30 MPa and 40 MPa) and content of coarse aggregate (965 kg/m3, 935 kg/m3, 906 kg/m3, and 877 kg/m3 ). Compressive strength, stress-strain curves, modulus of elasticity, Possion's ratio, ductility, and splitting tensile strength were investigated. The results show that:

1.Increase of compressive strength and decrease of coarse aggregate content will reduce the ductility the concrete.
2.The moduli of elasticity of concrete were approximately 83 %~90 % of those prediction by ACI 318.
3.The difference in Possion's ratio between high and low strength concretes becomes apparent, when coarse aggregate content is larger than 906 kg/m3.
4.Increase coarse aggregate content will decrease splitting tensile strength.
5.Equations were proposed to predict strain at maximum stress, stress-strain curve, modulus of elasticity, ductility, and splitting tensile strength related with coarse aggregate content.
URI: http://hdl.handle.net/11455/16140
其他識別: U0005-3107200915392000
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.