Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16182
DC FieldValueLanguage
dc.contributor賴進松zh_TW
dc.contributor周憲德zh_TW
dc.contributor.advisor盧昭堯zh_TW
dc.contributor.author張凱博zh_TW
dc.contributor.authorChang, Kai-Poen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:55:05Z-
dc.date.available2014-06-06T06:55:05Z-
dc.identifierU0005-1008201013092400zh_TW
dc.identifier.citation1.何淑君(2009),「透水框架群應用於固床工下游沖刷保護之研究」,碩士論文,國立中興大學土木工程研究所。 2.彭明正(2008),「變量流作用下非均勻橋墩之局部沖刷量測與模擬」,碩士論文,國立中興大學土木工程研究所。 3.彭思顯(1994),「投潭水作用下局部沖刷之動態研究」,碩士論文,國立中興大學土木工程研究所。 4.盧昭堯、賴進松及林詠彬(2008),「河道固床工破壞機制與減沖促淤新工法研擬」,經濟部水利署水利規劃試驗所委託研究計畫成果報告。 5.Bormann, N. E. and Julien, P. Y., (1991) "Scour Downstream of Grade-Control Structures" J. Hydraul. Engrg., vol.117(5), 579-594. 6.Blinco, P. H. and Partheniades, E. (1971). “Turbulence characteristics in free surface flows over smooth and rough boundaries,” J. Hydraul. Res. IAHR 9, 43-69. 7.Briaud, J. L., Chen, H. C., Kwak, K. W., Han, S.-W., and Ting, F. C. K. (2001). “Multiflood and multilayer method for scour rate prediction at bridge piers.” J. Geotech. Geoenviron. Eng., 127_2_, 114–125. 8.Breusers, H. N. C., (1966). “Conformity and time scale in two-dimensional local scour,” Proc. Symposium on model and prototype conformity: 1-8, Hydraulic research Laboratory Poona (also Delft Hydraulic, Delft, Publication 40). 9.Breusers, H. N. C. and Raukivi, A. J., (1991) "Scouring" A.A. Balkema, 123-142. 10.Chang, W. Y., Lai, J. S. and Yen, C. L. (2004). “Evolution of scour depth at circular bridge piers.” J. Hydraul. Eng., 130(9), 905-913. 11.Dey, S. and Sarkar, A., (2006) "Scour downstream of an apron due to submerged horizontal jets" Journal of Hydraulic Engineering, ASCE, vol.132(3), 246-257. 12.Farhoudi, J. and Smith, K. V. H. (1982). “Time scale for scour downstream of hydraulic jump, Proceedings ASCE, 108(HY10), 1147-1161. 13.Farhoudi, J. and Smith, K. V. H., (1985). "Local Scour Profiles Downstream of Hydraulic Jump" J. Hydraul. Res., 23(4), 343-358. 14.Gaudio, R., Marion, A., and Bovolin, V. (2000). "Morphological effects of bed sills in degrading rivers" J. Hydraul. Res., 38(2), 89-96. 15.Gaudio, R. and Marion, A. (2003). “Time evolution of scouring downstream of bed sills,” J. Hydraul. Res., 41(3), 271-284. 16.Hoffmans, G. J. C. M., (1990). “Concentration and flow velocity measurements in a local scour hole, Report 4-90, Faculty of civil Engineering, Hydraulic and Geotecnical Engineering Division, Delft Univercity of Technology, Delft. 17.Hoffmans, G. J. C. M., anf Verheji, H. J. (1997). “Scouring manual,” Balkema, Rotterdam, The Nethelands. 18.Laufer, J. (1951). “Investigation of turbulent flow in a two-dimensional channel,” NASA Report 1053, NACA Technical note 2123, 37(2), 1247-1266. 19.Lenzi, M. A., Marion, A., Comiti, F., and Gaudio, R. (2002). “Local scouring in low and high gradient streams at bed sills,” J. Hydraul. Res., 40(6), 731-739. 20.Meftah, M. B. and Mossa, M. M. (2006). “Scour holes downstream of bed sills in low-gradient channels,” J. Hydraul. Res., 44(4), 497-509. 21.Nezu, I. (1977). “Turbulence intensities in open-channel flow,” Proc. Japan Soc. Civil Engrg. 261, 67-76 (in Japanese). 22.Oliveto, G., and Hager, W. (2005). “Further results to time-dependent local scour at bridge elements.” J. Hydraul. Eng., 131(2), 97-105. 23.Pagliara, S., (2007) "Influence of sediment gradation on scour downstream of block ramps" J. Hydraul. Eng., 133(11), 1241-1248. 24.Sumer, B. M., Christiansen, N., and FredsØe, J. (1993). “Influence od cross section on wave scour around piles,” J. Waterw., port, Costal, Ocean Eng., 119(5), 477-495. 25.Tregnaghi, M., Marion, A., and Coleman, S. (2009). “Scouring at bed sills as a response to flush flodds,” J. Hydraul. Eng., 135(6), 466-475.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16182-
dc.description.abstract台灣西部許多河川之河床嚴重下降,河川及橋樑管理單位經常構築固床工,以穩定河床及減少橋墩基礎之沖刷。 本研究主要係探討固床工下游之跌水與水躍沖刷。首先,在清水沖刷之極限條件下,採砂質與礫質兩種底床質粒徑,配合兩種河床坡降、兩種固床工坡度及兩種流量,進行定量流之試驗。其次,在變量流方面,採四種單寬流量,進行不同峰型之入流歷線試驗。藉由室內試驗,探討沖刷坑之形態及變量流沖刷歷程之模擬。 定量流之試驗結果顯示,固定流量條件下,平衡沖刷坑形態及沖刷坑深度之時變特性皆可利用已知條件推估。此外,一般而言沖刷坑之最大沖刷深度、最大沖刷深度發生位置、長度及固床工最後一階塊體面上之水深隨底床坡度、比重福祿數、尾水深、臨界水深之增加而增加。 在變量流之試驗方面,首先利用定量流試驗沖刷深度數據,以疊加方式求得四種峰型之沖刷歷程,結果與變量流實測值大多一致,顯示在清水沖刷情況下,可利用定量流沖刷歷程來疊加預測階梯式之變量流沖刷歷程。其次,利用定量流時變歷線,經適當疊加,其結果亦與變量流試驗資料十分相近。zh_TW
dc.description.abstractRiver bed elevations of many rivers in the west of Taiwan have lowered down seriously. River and bridge management bureaus often construct grade-control structures to stabilize the riverbeds and reduce the scouring of the pier foundations. The aim of this research is to investigate the edge failures downstream of the grade-control structures. A series of experiments were conducted under the clear-water conditions with sand and gravel, two riverbed slopes, two ramp slopes for the grade-control structures, and two flow discharges. Furthermore, unsteady flow experiments with different types of hydrograph consisting of four unit discharges were performed. The shapes of the scour holes were discussed and the evolution of the scouring process for unsteady flows were simulated. In regard to the results of the steady flow experiments, empirical formulas were developed to describe the equilibrium scour hole and the time variations of the scour depth. In general, the maximum scour depth and its location, the length of the scour hole, and the flow depth at the last step of the grade-control structure increase with an increase of the channel bed slope, densimetric Froude number, tail water depth and critical depth. As for the results of the unsteady flow experiments, a concept of superposition is used to estimate the variations of the scour depth for four different types of hydrograph based on the measured scour data for the steady flows, and generally the results were consistent with the measured values for the unsteady flows. In addition, the evolution of the scour depth for an unsteady flow was also simulated by the superposition concept using the simulated scour evolution curves for the steady flows. Similarly, reasonably good results were obtained as compared with the measured scour evolution curve for the unsteady flow.en_US
dc.description.tableofcontents中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 照片目錄 IX 符號說明 X 第壹章 前言 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究內容 3 1.4組織內容 3 第貳章 文獻回顧 5 2.1水平護床工下游側深水沖刷 5 2.2水平射流沖刷 10 2.3傾角射流沖刷 15 2.4射流沖刷下之沖刷歷程 22 第參章 理論分析 24 3.1定量流清水沖刷 25 3.2變量流清水沖刷 30 第肆章 試驗方法 35 4.1 試驗設備 35 4.2 試驗條件規劃 41 4.3 試驗佈設 44 4.4 試驗方法與步驟 44 第伍章 結果與討論 49 5.1 定量流之沖刷坑試驗結果 49 5.2變量流沖刷歷程之模擬 68 第陸章 結論與建議 77 6.1 結論 77 6.2 相關建議 79 參考文獻 80 附錄 83 附錄A 84 附錄B 88 附錄C 94 附錄D 96zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1008201013092400en_US
dc.subjectgrade-control structureen_US
dc.subject固床工下游zh_TW
dc.subjectscouren_US
dc.subjectunsteady flowen_US
dc.subject沖刷坑形態zh_TW
dc.subject沖刷深度zh_TW
dc.subject變量流zh_TW
dc.title變量流作用下之固床工沖刷室內試驗研究zh_TW
dc.titleLaboratory investigation of scour downstream of a grade-control structure under unsteady flowsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:土木工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.