Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16205
DC FieldValueLanguage
dc.contributor黃玉麟zh_TW
dc.contributor干裕成zh_TW
dc.contributor.advisor林建宏zh_TW
dc.contributor.author謝鎔任zh_TW
dc.contributor.authorHsieh, Rung-Renen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:55:07Z-
dc.date.available2014-06-06T06:55:07Z-
dc.identifierU0005-1402201106105300zh_TW
dc.identifier.citation1.陳俊宏, “自充填混凝土梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國九十七年七月. 2.謝宗憲, “自充填混凝土預力梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國九十六年七月. 3.林為杰, “高工作度混凝土預力梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國九十六年七月. 4.Lin, C. H., and Lee, W. C. , “Shear Behavior of High-Workability Concrete Beams ”,ACI Structural Journal, V. 100, No. 5, September -October 2003, pp. 599-608. 5.Lin, C. H.; Hwang, C. L.; Lin, S. P.; and Liu, C. H. , “Self-Consolidating Concrete Columes under Concentric Compression,”ACI Structural Journal, Vol. 105, No. 4, July-August 2008, pp.425-432 6.林士平, “不同流動性混凝土之圍束行為,” 博士論文,國立中興大學土木工程研究所,民國九十四年七月. 7.Lin, C. H., and Lee, F. S., “Ductility of High-performance Concrete Beams with High Strength Lateral Reinforcement,” ACI Structural Journal, V. 98, No. 4, July-August 2001, pp. 1-9. 8.黃士庭, “鋼筋於自充填混凝土梁中握裹行為,” 碩士論文,國立中興大學土木工程研究所,民國九十二年七月. 9.魏世昕, “高工作度混凝土梁中鋼筋之握裹行為,” 碩士論文,國立中興大學土木工程研究所,民國九十八年七月. 10.郭耀仁, “低骨材含量自充填混凝土梁中鋼筋之握裹行為,” 碩士論文,國立中興大學土木工程研究所,民國九十八年七月. 11.徐育邦, “高強度飛灰混凝土預力梁之剪力強度,” 碩士論文,國立中興大學土木工程研究所,民國八十二年六月 12.黃兆龍, “混凝土性質與行為第三版,” ,詹氏書局,民國86年 13.張裕閔, “含爐石混凝土之孔隙與強度關係,” 碩士論文,國立中興大學土木工程研究所,民國九十五年七月. 14.蔡壽楨, “含飛灰混凝土之孔隙與強度關係,” 碩士論文,國立中興大學土木工程研究所,民國九十四年一月. 15.許日陽, “含矽灰混凝土之孔隙與強度關係,” 碩士論文,國立中興大學土木工程研究所,民國九十六年七月. 16.塗耕業, “水泥漿體添加卜作嵐材料之水化特性研究,” 碩士論文,國立中興大學土木工程研究所,民國九十六年六月. 17.呂添民, “添加奈米矽粉之水泥砂漿力學性質與微觀結構,” 碩士論文,國立台灣科技大學土木工程研究所,民國九十三年. 18.黃兆龍, “卜作嵐混凝土使用手冊,” 中興工程顧問社出版,民國九十六年 19.Phil M. Perguson, “Reinforced Concrete Fundamentals , SI version 4th edition,” 20.Mark K. Johnson ; Julio A. Ramirez Minium, “Shear Reinforcement in Beams with Higher Strength Concrete,” ACI Structure Journal, V.86, No. 4,July-Aug.1989,pp.376-382. 21.黃柏皓, “粗骨材含量對混凝土梁剪力行為之影響,” 碩士論文,國立中興大學土木工程研究所,民國九十九年七月. 22.張立法, “輕質自充填混凝土梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國九十七年七月. 23.ACI 318, “Building Code Requirements for Structural Concrete(ACI318-08)and Commentary(ACI 318-08)” , American Concrete Institute, 2008, 465 pp. 24.Zsutty, T. C., “Beam Shear Strength Prediction by Analysis of Existing Data ,” ACI Journal Proceedings, Vol. 65, No. 11, November 1986, pp. 943~951. 25.ACI Committee 224, “Control of Cracking in Concrete structures ,” ACI Journal, V. 65, No. 12, December 1972, pp. 717-752 . 26.范博翔, “高工作度混凝土預力梁之撓曲行為,” 碩士論文,國立中興大學土木工程研究所,民國九十五年七月. 27.林甫人, “含鋼線網剪力筋預力梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國八十四年六月. 28.Mansur,M.A.;Wee,T.H.;Chin,M.S., “Dervation of the Complete Strain-Stress Curves for Concrete in Compression” Magazine of Consrete Research. V.49.NO.173 .1995.pp289-290 29.謝熒倫, “自充填混凝土梁在高強度箍筋使用下之剪力強度測試與探討,” 碩士論文,國立交通大學土木工程研究所,民國九十一年六月.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16205-
dc.description.abstract本研究主要探討改變卜作嵐含量對於混凝土梁在承受靜態載重作用下之剪力行為。試驗共製作二十支梁,均無配置剪力筋,分成兩種設計強度,其中十支試體為普通強度(31.30 MPa),爐石取代水泥含量依序為5 %、10 %、15 %、20 %共四支;飛灰取代細骨材含量依序為5 %、10 %、15 %、20 %共四支;矽灰取代水泥含量依序為2.5 %、5 %共兩支。另外十支梁試體之設計取代量部分亦相同,但在設計強度上以高強度(51.00 MPa)作為區別。試驗之變數為抗壓強度、卜作嵐含量。 (1)試驗結果顯示,抗壓強度的提升對三種卜作嵐混凝土梁之剪力開裂強度、極限剪力強度、勁度及裂縫控制能力均有正面貢獻;但對剪力延展性卻有負面的影響。 (2)爐石取代率增加時,對剪力開裂強度、極限剪力強度、勁度、裂縫控制能力及剪力延展性均無明顯影響;但在低強度時,隨著爐石取代率的增加剪力開裂強度有增強之趨勢。 (3)飛灰取代率增加時,對剪力開裂強度、極限剪力強度、勁度、裂縫控制能力及剪力延展性均有下降之趨勢,其中以極限剪力強度下降幅度最為明顯。 (4)矽灰取代率增加時,對剪力開裂強度、極限剪力強度及裂縫控制能力均有正面貢獻,但對勁度則無顯影響;而隨著矽灰取代率增加使剪力延展性有下降的現象。 (5)在λ值部分,隨著抗壓強度的提升使得λ值偏不保守。三種卜作嵐混凝土梁所求得之λ平均值依序為1.27、1.22及1.24,三者差異不大。zh_TW
dc.description.abstractThe purpose of this research is to investigate the shear behavior of reinforced concrete beams with the addition of pozzolans. A total of 20 beam specimens were fabricated in this study. All beam specimens were designed without shear reinforcement. The compressive strength of concrete in 10 of the beams was 31.30 MPa, and that in the other 10 was 51.00 MPa. Four substitute ratios of cement with slag(5 %,10 %,15 %,and 20 %), four substitute ratios of sand with fly ash(5 %,10 %,15 %,and 20 %), two substitute ratios of cement with silica fume(2.5 %,5 %), were used for each concrete strength. The test variables include concrete strength and the addition of pozzolans. (1)The cracking shear strength, ultimate shear strength, member stiffness, and crack control capability, increase with the concrete strength; but the shear ductility decreases with the concrete strength. (2)The influence of slag replacement on the cracking shear strength, ultimate shear strength, member stiffness, crack control capability, and shear ductility, is unapparent; however the cracking shear strength increases with the replacement of slag in low-strength concrete beams. (3)The cracking shear strength, ultimate shear strength, member stiffness, and crack control capability, decrease with the fly ash replacement; moreover, this phenomenon is more significant on the ultimate shear strength. (4)The cracking shear strength, ultimate shear strength, and crack control capability, increase with the silica fume replacement; but this phenomenon is not significant on the member stiffness. (5)Use of ACI code procedure to calculate λ is not conservative.en_US
dc.description.tableofcontents第一章 緒論…………………………………………….……………- 1 - 1-1 前言…...………………………………………………………- 1 - 1-2 研究目的及動機.......................................................................- 1 - 1-3 研究目的與方法………………………………………….…..- 2 - 第二章 文獻回顧…………………………………………………….- 4 - 2-1 卜作嵐材料…………………………………………………...- 4 - 2-1-1 爐石……………………………………………………...- 4 - 2-1-2 飛灰………………………………………...……………- 6 - 2-1-3 矽灰………………………………………….…….….…- 7 - 2-2 相關文獻回…………………………………………………....- 8 - 第三章 試驗規劃與過程………………………………..…………..- 22 - 3-1 試驗內容……………………………………………….…….- 22 - 3-2 試驗材料……………………………………………….…….- 22 - 3-3 試體製作……………………………………………….…….- 24 - 3-4 試驗設備……………………………………………….…….- 25 - 3-5 試驗安裝……………………………………………….…….- 26 - 3-6 試驗過程……………………………………………….…….- 26 - 第四章 試驗結果與討論……………………………………………- 28 - 4-1 混凝土試拌過程……………………………………………..- 28 - 4-1-1 試拌初期……………………………………………….- 28 - 4-1-2 試拌過程……………………………………………….- 28 - 4-2 剪力破壞行為觀測……………………………………….....- 29 - 4-2-1 混凝土梁之剪力開裂行為…………………………….- 29 - 4-2-2 剪力開裂後的剪力傳遞機構………………………….- 30 - 4-2-3 剪力破壞模式.................................................................- 31 - 4-2-4 試體破壞行為之觀測………………………………….- 33 - 4-2-5 載重變位圖…………………………………………….- 35 - 4-3 剪力開裂強度Vcr……………………………………………- 35- 4-3-1 剪力開裂強度Vcr的定義與取得……………………..- 35 - 4-3-2 各變數對剪力開裂強度Vcr之影響…………………..- 36 - 4-3-3 剪力開裂強度試驗值Vcr,test與預測值比較…………..- 38 - 4-4 極限剪力強度……………………………………………….- 42 - 4-4-1 混凝土抗壓強度對極限剪力強度之影響……………- 42 - 4-4-2 卜作嵐材料取代率對極限剪力強度之影響…………- 43 - 4-4-3 極限剪力強度試驗值Vn,test與預測值比較…………..- 44 - 4-5 勁度……………………………………………………….…- 46 - 4-5-1 混凝土抗壓強度對勁度之影響………………………- 47 - 4-5-2 卜作嵐材料取代率對勁度之影響……………………- 47 - 4-6 裂縫控制能力……………………………………………….- 49 - 4-6-1 混凝土抗壓強度對裂縫控制能力之影響……………- 50 - 4-6-2 卜作嵐材料取代率對裂縫控制能力之影響…………- 50 - 4-7 剪力延展性………………………………………………….- 52 - 4-7-1 混凝土抗壓強度對剪力延展性之影響……………….- 53 - 4-7-2 卜作嵐材料取代率對剪力延展性之影響…………….- 54 - 4-8 卜作嵐混凝土ACI預測式λ的建議……………………....- 55 - 第五章 結論……………………………………………...…..…....…- 56- 參考文獻……………………………………………………..…...…- 60 -zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1402201106105300en_US
dc.subjectPozzolansen_US
dc.subject卜作嵐材料zh_TW
dc.subjectSlagen_US
dc.subjectFly ashen_US
dc.subjectSilica fumeen_US
dc.subjectShear behavioren_US
dc.subject爐石zh_TW
dc.subject飛灰zh_TW
dc.subject矽灰zh_TW
dc.subject剪力行為zh_TW
dc.title卜作嵐含量對混凝土梁剪力行為之影響zh_TW
dc.titleEffect of Pozzolans on Shear Behavior of Concrete Beamsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:土木工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.