Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16213
DC FieldValueLanguage
dc.contributor顏聰zh_TW
dc.contributorCong Yanen_US
dc.contributor王和源zh_TW
dc.contributorHe-Yuan Wangen_US
dc.contributor.advisor陳豪吉zh_TW
dc.contributor.advisorHao-Ji Chenen_US
dc.contributor.author鄧輝凱zh_TW
dc.contributor.authorDeng, Huei-Kaien_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:55:07Z-
dc.date.available2014-06-06T06:55:07Z-
dc.identifierU0005-1707201012473600zh_TW
dc.identifier.citation【1】 S. Mindess, J. F. Young, and D. Darwin. "Concrete. 2nd edition", Upper Saddle River, NJ: Prentice Hall, 2003. 【2】 塗耕業,“水泥漿體添加卜作嵐材料之水化特性研究”,國立中興大學土木工程系碩士論文,2007。 【3】 S. H. Kosmatka, B. Kerkhoff, and W. C. Panarese, Design and Control of Concrete Mixtures, 14th Edition, EB001.14T, Portland Cement Association, Skokie, IL, 2002. 【4】 黃兆龍,“混凝土性質與行為”,詹氏書局,2003. 【5】 P. K.Metha, “Pozzolanic and Cementitious By-products as Mineral Admixtrues for Concrete ─ A critical Review”, First International Conference on the Use of Fly Ash, Silica Fume, Slag andother Mineral By-poducts in Concrete, pp. 1-46, Canada, 1983. 【6】 蔡壽楨,“含飛灰混凝土之孔隙與強度關係”,國立中興大學碩士論文,2005. 【7】 ACI Committee 266, "Use of Fly Ash in Concrete", ACI Materials Journal, pp. 381-409, Sep-Oct, 1987. 【8】 黃兆龍,「高爐熟料及飛灰材料在混凝土工程上之應用」,高爐石與飛灰資源在混凝土工程上應用研討會,財團法人台灣營建研究中心,民國75年12月。 【9】 林炳炎,“飛灰、矽灰、高爐爐石用在混凝土中”,1993。 【10】 中華民國八十二年混凝土技術研討會,“高爐水泥混凝土之應用”,主辦單位:內政部建築研究所籌備處、國立交通大學土木工程研究所、國科會工程處工程科技推展中心。 【11】 沈得縣,“高爐熟料與飛灰之波索蘭反應機理及對水泥漿體巨微觀性質影響之研究”,國立台灣工業技術學院博士論文,pp.13~18,民國80年。 【12】 中國國家標準CNS9661 新拌混凝土空氣含量檢驗法、CNS12223 水淬高爐爐渣。 【13】 ACI Committee 226, "Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete", ACI Materials Journal, pp 327-342, July-August, 1987. 【14】 高忠愛、吳天寶、邢夢蘭,"廢棄物處理技術",科技圖書股份有限公司,1995年7月。 【15】 朱敬平、李篤中,"汙泥處置(II):汙泥之前處理",台大工程學刊第82期,2001年6月。 【16】 Bang, S. S., Galinat, J. K., and Ramakrishnan, V. (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microb. Technol. 28, 404-409. 【17】 Bachmeier, K. L., Williams, A. E., Warmington, J. R., and Bang, S. S. (2002) Urease activity in microbiologically-induced calcite precipitation. J. Biotech. 93, 171-181. 【18】 Day, J. L., Ramakrishnan, V., and Bang, S. S. (2003) Microbiologically induced sealant for concrete crack remediation. Proceedings of the 16th Engineering Mechanics Conference, Seattle, WA. 【19】 DeJong, J. T., Fritzges, M. B., and Nüsslein, K. (2006) Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenv. Eng. 132, 1381-1392. 【20】 Fernandes, P. (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol. Biotechnol. 73, 291–296. 【21】 Perito, B., and Mastromei, G (2003) Conservation of monumental stones by bacterial biomineralization. Microbiol. Today 30, 113–114. 【22】 de MUYNCK W, COX K, de BELI N, et al. (2007) Bacterial carbonate precipitation as an alternative surface treatment for concrete [J]. Constr Build Mater, doi:10.1016/j.conbuildmat. 2006.12.011. 【23】 NEMATI M, VOORDOUW G. (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically76 [J]. Enzyme Microb Technol, 33(5): 635–642. 【24】 STOCKS-FISCHER S, GALINAT J K, BANG S S. Microbiological precipitation of CaCO3 [J]. Soil Biol Biochem, 1999, 31(11): 1 563–1 571. 【25】 RODRIGUEZ NAVARRO C, RODRIGUEZ GALLEGO M, BEN CHEKROUN K, et al. (2003) Conservation of ornamental stone by myxococcus xanthium-induced carbonate biomineralization [J]. Appl Environ Microbiol, 69(4): 2 182–2 193. 【26】 DICK J, de WINDT W, de GRAEF B, et al. (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species [J]. Biodegradation, 17(4): 357–367. 【27】 Tiano, P. (1995) Stone reinforcement by calcite crystals precipitation induced by organic mat rix macromolecules [J]. Studies in Conservation, 40 (3):171~176. 【28】 Ruixing, W. Chunxiang, Q. Jianyun, W. Study on Microbiological precipitation of CaCO3. 東南大學學報(自然科學版) 【29】 Lochhead M J, Letellier S R, Vogel V. (1997) Assessing the role of interfacial electrostatics in oriented mineral nucleation at charged monolayers[J]. J Phys Chem, 101B: 10821-10827. 【30】 Kitamura, M., Konno, H. (2002) Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions [J]. Journal of Crystal Growth, (236): 323-332. 【31】 Zeshan, H., Yulin, D. (2003) Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants [J]. Journal of Colloid and Interface Science, (266): 359-365. 【32】 Ramakrishnan, V., Ramesh, K. P., Bang. S. S. (2001) Bacterial Concrete [C]. Proceedings of SPIE, 4234, Smart Material s, Alan R. Wilson, Hiroshi Asanuma, Editors, 168~176. 【33】 Lirong Zhong, M.R. Islam. 一種新型微生物封堵裂縫的試驗研究. 國外油田工程. 【34】 Zeshan, H., Yulin, D. (2004) Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate [J]. Powder Technology, (140):10-16. 【35】 Liang, C., Chun-Xiang, Q., Rui-Xing, W. and Jian-Yun, W. Study on the Mechanism of Calcium Carbonate Formation Inducedby Carbonate-mineralization Microbe. 東南大學學報(化學) 【36】 Ruixing, W., Chunxiang, Q. Restoration of Defects on the Surface of Cement-Based Materials by Microbiologically precipitated CaCO3. 東南大學學報(矽酸鹽). 【37】 Hill, D. D. (2002) Sleep B. E. Effects of biofilm growth on flow and transport through a glass parallel plate f racture[J]. Journal of Contaminant Hydrology, 56, 227~246. 【38】 LI Pei-hao,QU Wen-jun. State of Art in Application of Bioremedying and Bioreinforceing Materials in Civil Engineering. Vol.26, No5. 材料科學與工程學報. 【39】 Ramachandran, S. K., Ramakrishnan, V., and Bang, S. S. (2001). “Remediation of concrete using micro-organisms.” ACI Material Journal, 98(1), 3-9.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16213-
dc.description.abstract在自然界中,某些微生物可以通過其自身的生命活動,與周圍環境介質之間不斷發生著酶化作用,逐漸礦化形成方解石,再經過漫長時期的累積,最終將自然界中沉積的疏鬆碎屑物質膠結形成堅硬的岩石。而本研究之主要目的為利用微生物自身的代謝作用進而誘導碳酸鈣沉積,藉由將微生物植入淤泥內以探討淤泥固化速率,並應用於混凝土塊裂縫中以評估修補之效果。 本研究選用Bacillus pasteurii作為試驗菌種。由試驗結果顯示,微生物應用於淤泥固化、混凝土裂縫修補時,淤泥加上少量水泥系材料與菌液可有效的提高淤泥固化土之強度,而使用較高細菌細胞數來誘導碳酸鈣沉澱對混凝土裂縫的修補有較佳的效果,但修補效果隨著原有混凝土水膠比的降低而降低,且混凝土裂縫修補不適合應用於溫度較低的區域。整體而言,應用微生物作為淤泥固化及混凝土裂縫修補,已可使其相關強度提升20%至35%左右,抵抗水滲透的能力甚至可提高至70%左右。zh_TW
dc.description.abstractIn the natural world, some micro-organisms can produce enzymes on their own, gradually turning their surrounding materials into calcite, which after a long period of time, accumulates and is bound into hard rock deposits. The main purpose of this research is to use the metabolism of the microorganism itself to induce calcium carbonate deposition, and to discuss the speed of sludge solidification by embedding the microorganism into sludge, and applying it into concrete fissures to assess the effect of repairing. In this research, Bacillus pasteurii was chosen as the experimental bacteria. The results of the experiment show that when the microorganisms are applied to both sludge solidification and concrete fissure repair, adding a small amount of cement and bacteria liquid on them can effectively enhance their strength. Moreover, when higher bacteria numbers are used to attract Calcium carbonate deposition, it has better results on repair of concrete fissures. However, the effect of repair may decrease along with the reduction of the original Concrete Water-to-binder Ratio. Both the sludge solidification and concrete fissure repair aren't suited to use in lower temperature regions. In summary, application of the microorganism to sludge Solidification and concrete fissure repair increases its strength by about 20 to 35 percent, and can increase its resistance to water permeation by up to about 70 percent.en_US
dc.description.tableofcontents中文摘要 I Abstract II 總目錄 III 表目錄 VI 圖目錄 VIII 論文照片 XI 第一章 緒論 1 1.1研究起源 1 1.2研究目的 1 1.3 研究方法 2 第二章 文獻回顧 4 2.1 水泥 4 2.1.1水泥之製造與組成 4 2.1.2水泥之水化反應與產物 5 2.2 卜作嵐材料 6 2.2.1卜作嵐材料之定義與分類 6 2.2.2飛灰 7 2.2.3爐石 9 2.3 淤泥 10 2.3.1台灣汙泥現況 10 2.3.2汙泥的種類與性質 11 2.4微生物誘導碳酸鈣沉積之應用 12 2.4.1 Bacillus pasteurii 12 2.4.2水泥基材料的修復 14 2.4.3微生物作用之機理 14 2.4.4外界條件對微生物沉積碳酸鈣的影響 15 2.4.5微生物應用於材料之修復 18 第三章 試驗規劃 31 3.1 試驗變數 31 3.1.1淤泥固化 31 3.1.2混凝土裂縫修補 32 3.2試驗材料 33 3.3試驗配比 35 3.3.1淤泥配比 35 3.3.2水泥砂漿配比 36 3.3.3混凝土配比 36 3.4試驗流程 38 3.4.1淤泥固化 38 3.4.2混凝土裂縫修補 39 3.5試驗儀器及設備 41 第四章 試驗結果與討論 57 4.1細菌應用於淤泥固化之可行性探討 57 4.1.1抗壓強度試驗 57 4.1.2抗彎強度試驗 59 4.1.3透水率試驗 61 4.2細菌應用於混凝土裂縫之修補評估探討 62 4.2.1水泥砂漿抗壓強度 63 4.2.2混凝土抗彎強度試驗 64 第五章 結論 91 參考文獻 93zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707201012473600en_US
dc.subjectmicroorganismen_US
dc.subject微生物zh_TW
dc.subjectsludge solidificationen_US
dc.subjectconcretes repairen_US
dc.subject淤泥固化zh_TW
dc.subject混凝土裂縫修復zh_TW
dc.title微生物應用於淤泥固化及混凝土修復之研究zh_TW
dc.titleResearch on the microorganism application of sludge solidification and concretes repairen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:土木工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.