Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16225
DC FieldValueLanguage
dc.contributor洪李陵zh_TW
dc.contributorLi-Ling Hongen_US
dc.contributor朱世禹zh_TW
dc.contributor盧煉元zh_TW
dc.contributorShi-Yu Zhuen_US
dc.contributorLyan-Ywan Luen_US
dc.contributor.advisor林其璋zh_TW
dc.contributor.advisorChi-Chang Linen_US
dc.contributor.author謝坤樹zh_TW
dc.contributor.authorHsieh, Kun-Shuen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:55:08Z-
dc.date.available2014-06-06T06:55:08Z-
dc.identifierU0005-1808201000430200zh_TW
dc.identifier.citation1. McVerry, G.H., “Structural Identification in the Frequency Domain from Earthquake Records”, Earthquake Engineering and Structural Dynamics, Vol. 8, pp.166-180, 1980. 2. Beck, J.L., “System Identification Applied to Strong Motion Records from Structures”, Earthquake Ground and its Effect on Structures, AMD, ASME, Vol. 53, pp.109-133, 1983. 3. Li, Y. and Mau, S.T., “A Case Study of MIMO System Identification Applied to Building Seismic Records”, Earthquake Engineering and Structural Dynamics, Vol. 20, pp.1045-1064, 1991. 4. Luz, E. and Wallaschek, J., “Experiment Modal Analysis Using Ambient Vibration”, The International Journal of Analytical and Experimental Modal Analysis, Vol. 7, No. 1, pp.29-39, 1992. 5. Lus, H., Betti, R., and Longman R.W., “Identification of Linear Structural Systems Using Earthquake-Induced Vibration Data”, Earthquake Engineering and Structural Dynamics, Vol. 28, pp1449-1467, 1999. 6. Alvin, K.F. and Park, K.C., “Second-Order Structural Identification Procedure via State-Space-Based System Identification”, AIAA Journal, Vol. 32, No. 2, pp397-406, 1994. 7. Ljung, L., System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, NJ, 1987. 8. Juang, J.N., Applied System Identification, Prentice-Hall, Englewood Cliffs, NJ, 1994. 9. Juang, J-N., Phan, M., Horta, L.G., and Longman, R.W., “Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiments”, Journal of Guidance, Control, and Dynamics, Vol. 16, No. 2, pp.320-329, 1993. 10. 楊濱毓,“高樓結構地震反應之系統識別-層間位移、基底剪力、傾倒彎矩”,國立台灣大學土木工程研究所碩士論文(羅俊雄教授指導),1997。 11. 盧志清,“鋼筋混凝土建築物模態參數之不確定性分析”,國立成功大學土木工程研究所碩士論文(洪李陵教授指導),1998。 12. Loh, C.H., Lin, H.M., “Application of Off-line and On-line Identification Techniques to Building Seismic Response Data”, Earthquake Engineering and Structural Dynamics, 25, 269-290, 1996. 13. Ueng, J.M., Lin, C.C., and Lin, P.L., “System Identification of Torsionally -Coupled Buildings”, Computers and Structures, 74, 667-686, 1999. 14. Lin, C.C., Ueng, J.M., Wu, K.C. and Tang, C.P., “Parametric Identification of Torsionally-Coupled Buildings from Earthquake Response Records”, The 2nd World Conference on Structural Control, 3, 2167-2176, Kyoto, Japan, 1998. 15. 林其璋、吳侑霖、王傑兒,“應用地震記錄之建築結構系統識別”,88年「電子計算機於土木水利工程應用」研討會論文集,Vol. 1,pp. 271-278,2000。 16. Lin, C.C., Lu, M.W., and Ueng, J.M., “Dynamic Property Identification and Damage Assessment of Buildings Based on Earthquake Response Records”, Proceedings of the 2000 NCHU-WASEDA Joint Seminar on Earthquake Engineering, Taichung, Taiwan, pp. 3-1~3-26,2000。 17. DeAngelis, M., Lus¸, H., Betti, R., and Longman, R. W., “Extracting Physical Parameters of Mechanical Models From Identified State Space Representations,”ASME J. Appl. Mech., 69(5), pp. 617–625., 2002. 18. Yu , J., Imbimbo, M., Betti, R., “Identification of Linear Structural Systems With a Limited Set of Input-Output Measurement”, Journal of Applied Mechanics, Vol. 76, Issue 3, 031005, 2009. 19. Hegde, G., Sinha, R., “Parameter Identification of Torsionally Coupled Buildings from Earthquake Response Records”, Earthq. Eng. Struct. D. Vol. 37, no. 11, pp. 1313–1331, 2008. 20. Hegde, G., Sinha, R., “A Technique for Placing Few Sensors on a Building for Complete Modal Identification”, Mechanics of Advanced Materials and Structures, Vol. 16, No. 3, pp. 248-259, 2009. 21. Doebling, S. W., Farrar, C. R., Prime, M. B., Shevitz, D. W., “Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Vibration Characteristics: A Literature Review”, Tech Rep.LA-13070-MS, Los Alamos National Laboratory, Los Alamos, N.M., 1996. 22. Pandey, A. K., Biswas, M., Samman, M. M., “Damage Detection from Changes in Curvature Mode Shapes”, Journal of Sound and Vibration, Vol. 145, No. 2, pp. 321-332, 1991. 23. Pandey, A. K., Biswas, M., “Damage Detection in Structures using Changes in Flexibility”, Journal of Sound and Vibration, Vol. 169, No. 1, pp. 3-17, 1994. 24. Farrar, C. R., Jauregui, D. A., “Comparative Study of Damage Identification Algorithms Applied to a Bridge”, Smart Materials and Structures, Vol. 7, pp. 704-731, 1998. 25. Allemang, R. J., Brown, D. L., “A Correlation Coefficient for Modal Vector Analysis”, Proceeding of International Modal Analysis Conference & Exhibit, pp. 110-116, 1982. 26. Lieven, N. A., Ewins, D. J., “Spatial Correlation of Mode Shapes, the Coordinate Modal Assurance Criterion (COMAC)”, Proceeding of the sixth International Modal Analysis Conference, pp. 690-695, 1988. 27. Kim, H. S., and Chun, Y. S., “Structural Damage Assessment of Building Structures Using Dynamic Experimental Data”, Structural Design of Tall and Special Buildings, Vol. 13, pp. 1-8, 2004. 28. Kim, J. T., Ryu, Y. S., Cho, H. M., and Stubbs, N., “Damage Identification in Beam-Type Structures: Frequency-Based Method vs Mode-Shape-Based Method”, Engineering Structures, Vol. 25, pp. 57-67, 2003. 29. Bernal, D., “Load Vector for Damage Localization”, Journal of Engineering Mechanics, Vol. 128, pp. 7-14, 2002. 30. Bernal, D., Gunes, B., “Flexibility Based Approach for Damage Characterization: Benchmark Application”, Journal of Engineering Mechanics, Vol. 130, pp. 61-70, 2003. 31. Yong, G., Spencer, BF., “Damage localization under ambient vibration using changes in flexibility”, Journal of Earthquake Engineering and Engineering Vibration, Vol. 1, pp. 136-144, 2002. 32. Duan, Z.D., Yan, G.R., Ou, J.P., Spencer, BF., “Damage detection in ambient vibration using proportional flexibility matrix with incomplete measured DOFs”, Structural Control and Health Monitoring, Vol. 14, pp. 186-196, 2007. 33. 林裕家, “利用地震反應資料進行結構全域及局部性損害評估”, 國立台灣大學土木工程研究所碩士論文, 2007. 34. 凃哲維, “DLV法在結構破壞偵測之應用”, 國立交通大學土木工程研究所碩士論文, 2008. 35. Wang, J. F., Lin, C. C., Yen, S. M., “Story Damage Index of Seismically-Excited Buildings Based on Modal Parameters”, 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18), Beijing, China, 2005. 36. Wang, J. F., Lin, C. C., “Damage Assessment of Irregular Building Using an Innovative Story Damage Index”, International Workshop on Structural Health Monitoring and Damage Assessment, pp. III-1~III-27, Taichung, Taiwan, R.O.C., December 14-15, 2006. 37. Wang, J. F., Lin, C. C., Yen, S. M., “A Story Damage Index of Seismically- Excited Buildings Based on Modal Frequency and Mode Shapes”, Engineering Structure, Vol. 29, pp. 2143-2157, 2007. 38. 顏士閔, “依識別模態參數之建築結構層間損壞指標”, 國立中興大學土木工程研究所碩士論文, 2005. 39. 楊淳皓, “扭轉耦合建築結構受震層間損壞指標”, 國立中興大學土木工程研究所碩士論文, 2006. 40. Morita, K., Teshigawara, M., Hammaoto, T., “Detection and Estimation of Damage to Steel Frames through Shaking Table Tests”, Structural Control and Health Monitoring, Vol. 12, pp. 357-380, 2005. 41. 鐘立來, “非線性調諧阻尼器最佳化之研究”, 國家地震工程研究中心研究報告,NCREE-07-038. 42. 梁晉得, “依有限量測之建築結構層間損壞自動化偵測”, 國立中興大學土木工程研究所碩士論文, 2009. 43. Zadeh, L. A. “Fuzzy Sets”, Inform. Control, Vol. 8, pp. 338-353, 1965. 44. 盧煉元, 林錦隆, “模糊控制器於半主動摩擦阻尼器減震應用之探討”, 中國土木水利工程學刊, 第20卷, 第81-95頁, 2008. 45. MATLAB: Fuzzy Logic Toolbox. The Math Works, Inc., Natick, Massachusetts; 2000. 46. Lin, C. C., and Soong, T. T., et al, “Machine Diagnostics by Inverse Filtering Techniques”, In Proceedings of the First International Machinery Monitoring and Diagnostics Conference, pp. 155-160, Las Vegas, Nevada, U.S.A., Sep. 11-14, 1989. 47. Lin, C. C., et al, Method and Apparatus for Diagnostics the State of a Machine, United State Patent No. 4-980-844, Dec. 25, 1990. 48. 王哲夫, “被動調諧質量阻尼器之最佳設計暨應用”, 國立中興大學土木工程研究所碩士論文, 1993. 49. Chopra, A. K., Dynamics of Structures: Theory and Applications to Earth- quake Engineering, Prentice-Hall, New Jersey, U.S.A., 2001.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16225-
dc.description.abstractThis study presents a damage localization technique for seismically-excited buildings based on changes of dominant frequencies identified from incomplete measurements. Both planer shear buildings and torsionally-coupled (TC) buildings were considered. The SRIM system identification technique was firstly used to estimate the dynamic properties of the building. However, mode shapes can not be obtained completely due to incomplete measurements. An optimal mode shape recovery technique was proposed to recover the complete first mode shape of the system. A time domain and a frequency domain objective function were considered. Pattern Search Tool in MATLAB was employed to minimize the objective functions. A fuzzy inference system (FIS) and a MAC (Mode Assurance Criterion) index were applied to develop the damage localization technique. Finally, a three-story benchmark building in NCREE was considered to examine the accuracy and applicability of the proposed damage localization technique via experimental data. The acceptance of the assumption was also verified.en_US
dc.description.abstract本文針對平面剪力與扭轉耦合建築結構,探討僅量測部分樓層振動反應情況下,利用最佳振態還原技巧,還原完整之振態值,並進行層間損壞評估。本文方法首先針對未損壞之剪力結構,利用輸入、部分輸出量測訊號以SRIM系統識別技巧獲得部份模態參數,並由預估未知之振態和時域、頻域兩種最佳化指標,藉由Matlab程式內建之直接搜尋法,使未知之振態收斂至最佳值,作為該系統之最佳振態值,以還原完整之振態值。進而,利用還原之完整振態參數,進行結構損壞位址偵測。損壞位址偵測法,主要是建立損壞前後多模態頻率變化,應用模糊推論系統或模態確証準則(Mode Assurance Criterion, MAC)指標來判別損壞層間位置,並估算其層間勁度折減比。文中針對平面與扭轉耦合剪力建築結構進行數值模擬,探討本文方法之限制與適用性。最後並以國家地震工程研究中心標竿構架震動台試驗紀錄進行分析驗證,以驗證本法於實際應用時之可行性。zh_TW
dc.description.tableofcontents謝誌 i 中文摘要 ii Abstract iii 目錄 iv 表格目錄 vii 圖形目錄 xv 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 系統識別理論 2 1.2.2 損壞指標 4 1.3 本文內容 5 第二章 最佳振態還原及損壞位址偵測理論推導 7 2.1 最佳振態還原 7 2.1.1 層間勁度推導 7 2.1.2 最佳振態評估方法 9 2.1.3 最佳化指標 11 2.1.4 最佳化流程與方法 12 2.2 損壞位址偵測 13 2.2.1 損壞位址偵測理論推導 14 2.2.2 判定損壞位址之法則 16 第三章 平面剪力建築結構振態及損壞評估數值驗證 21 3.1 多層平面剪力結構 21 3.1.1 平面剪力結構最佳振態還原 21 3.1.2 質量預估誤差的影響 22 3.1.3 損壞位址偵測 23 3.2 不同損壞指標比較 25 3.2.1 其他損壞指標 25 3.2.2 數值驗證比較 29 3.3 損壞位址偵測理論之適用性 34 第四章 扭轉耦合建築結構 36 4.1 扭轉耦合建築結構模式理論推導 36 4.1.1 扭轉耦合建築結構模式 36 4.1.2 依模態參數計算平移與旋轉勁度 42 4.1.3 依模態參數計算樓版偏心距 45 4.2 假設條件與未知數的關係 47 4.3 最佳扭轉耦合振態還原 49 4.4 數值模擬驗證 51 4.4.1 損壞前後扭轉耦合數值模式定義 51 4.4.2 最佳振態還原 52 4.4.3 損壞位址偵測 54 4.4.4 最佳扭轉耦合振態還原之適用性 55 第五章 標竿結構損壞評估 57 5.1 標竿結構基本資料與實測紀錄 57 5.2 依實測試驗紀錄之最佳振態還原 58 5.3 依實測試驗紀錄之損壞位址偵測 59 第六章 結論與建議 61 參考文獻 63zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201000430200en_US
dc.subject有限量測zh_TW
dc.subjectincomplete measurementsen_US
dc.subject系統識別zh_TW
dc.subject損壞評估zh_TW
dc.subject最佳化理論zh_TW
dc.subject模糊推論zh_TW
dc.subjectdamage localizationen_US
dc.subjectexperimental verificationen_US
dc.subjectoptimal design theoryen_US
dc.subjectfuzzy inference systemen_US
dc.title依有限量測之建築結構最佳振態還原及損壞位址偵測zh_TW
dc.titleOptimal Mode Shape Recovery and Damage Localization for Buildings Based on Incomplete Measurementsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
Appears in Collections:土木工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.