Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChen, En-Chuanen_US
dc.identifier.citation1. 王兆印,高含砂水流運動機理的試驗研究,水利水電科學研究院博士論文,1984。 2. 王尚毅,挾砂明流中的流移質運動,天津市水運學會報告,1959。 3. 水利規劃試驗所,濁水溪流域整體治理初步調查規劃(調查篇),2000。 4. 中國水利學會泥砂專業委員會,泥砂手冊,中國環境科學出版社,1992。 5. 王傳益、盧昭堯、徐享崑、馮德榮、蘇志強,聲波杜卜勒流速儀於台灣河川流量觀測之應用,中華水土保持學報,29(1): 23-32,1998。 6. 台灣省水利局,大甲溪防洪計畫規劃報告,1973。 7. 台灣省水利局,大甲溪治理規劃報告,1993。 8. 台灣省水利局,濁水溪水系治理規劃報告-濁水溪本流及支流東埔蚋溪,1996。 9. 李偉哲,湍流渠槽之輸砂量模式研究,國立台灣大學生物環境系統工程學研究所碩士論文,2002。 10. 何智武,湍流渠槽沉滓運移特性之研究,國立台灣大學土木工程學研究所博士論文,1983。 11. 何智武,濁水溪上游河道輸砂量觀測方法與預估研究(一~四),行政院國科會防災科技研究報告,1983~1987。 12. 吳益裕,陡坡渠道混合輸移機制之研究,國立中興大學土木工程學研究所博士論文,1999。 13. 吳榮瑜,遮蔽效應對混合粒徑輸砂量之影響探討,國立台灣大學生物環境系統工程學研究所碩士論文,2007。 14. 陳志清,河道輸砂學導論,徐氏基金會,1976。 15. 陳繁首、何智武,阿里山屏遮那山崩(地滑)觀測及德基水庫上游七家灣溪攔砂壩控制實驗研究計畫,台灣省林務局。,台灣省林務局,1978。 16. 陳耀彬,陡坡渠槽輸砂特性之試驗研究,國立中興大學水土保持學研究所碩士論文,1990。 17. 黃宏斌,陡坡水槽之輸砂量模式研究,台灣水利,40(1): 44-51,1992。 18. 郭朝雄等人,濁水溪砂質(沖積扇)河段輸砂特性研究(一~五),行政院國科會防災科技研究報告,1984~1988。 19. 楊錦釧、林志平,石門水庫泥砂運移模擬及排淤方案之研究,經濟部水利署北區水資源局委託研究計畫報告,2004。 20. 經濟部水利署,河川高灘地淤積砂石開採可行性評估研究,2007。 21. 經濟部水利署水利規劃試驗所,大甲溪流域聯合整體治理規劃,2003。 22. 經濟部水利署水利規劃試驗所,大甲溪流域聯合治理規劃檢討報告初稿,2005。 23. 經濟部水利署水利規劃試驗所,河床質調查作業參考手冊(草案) ,2007。 24. 經濟部水利署水利規劃試驗所,全省主要河川流域地質資料查核-大甲溪及大安溪專題報告書,2007。 25. 經濟部水利署水利規劃試驗所,大甲溪流域下游河段河床穩定分析研究(1/4~2/4),2008~2009。 26. 經濟部水利署第三河川局,大安、大甲溪災害原因調查及治理對策檢討與改善,2005。 27. 盧昭堯等人,台灣河川流量觀測技術之開發與應用(一~三),台灣省水利處專題研究計畫報告,1995~1997。 28. 盧昭堯等人,高效率河川流量量測技術之研發與應用,經濟部水資源局專題研究計畫報告,1998。 29. 盧昭堯等人,河川流量新量測技術之研發(1/2~2/2),經濟部水利署委託研究計畫成果報告,2001~2002。 30. 盧昭堯等人,河道深槽沖淤量測及預測模擬變化潛勢評估(以濁水溪為研究案例)(1/3~3/3),經濟部水利署水利規劃試驗所委託研究計畫成果報告,2003~2005。 31. 盧昭堯等人,921地震後濁水溪下游輸砂關係之試驗研究(1/2~2/2),經濟部水利署水利規劃試驗所委託研究計畫成果報告,2006~2007。 32. 盧昭堯等人,河道固床工破壞機制與減沖促淤新工法研擬(1/2),經濟部水利署水利規劃試驗所委託研究計畫成果報告。 33. 錢寧、萬兆惠,泥砂運動力學,科學出版社,1991。 34. 謝孟荃、黃宏斌,混合粒徑輸砂量估算之研究,中華水土保持學報,38(4): 349-371,2007。 35. 蘇志強,混合礫石渠槽輸砂率研究,國立中興大學土木工程學研究所碩士論文,1995。 36. 蘇志強,混合礫石陡坡渠槽之非平衡篩選現象研究,國立中興大學土木工程學研究所博士論文,2005。 37. 蘇重光,適用於濁水溪上游河道推移質採樣器之研究設計,國科會防災科技研究報告74-08號,1985。 38. Ackers, P., and White, W. R. (1973). “Sediment transport : new approach and analysis.” Journal of the Hydraulic Division, ASCE, 99(11), Proceeding paper 10167, 2041-2060. 39. Agrawal, Y. C., and Pottsmith, H. C. (1996). ‘‘Laser instruments for particle sizing and settling velocity measurements in the coastal zone.’’ Proc., Oceans-Conf.–1996, Vol. I, IEEE, Piscataway, N.J., 1135–1142. 40. Armanini, A., and di Silvio, G. (1988), “A one-dimensional model for the transport of a sediment mixture in non-equilibrium conditions.” J. Hydr. Res., IAHR, 26(3), 275-292. 41. ASCE Task Committee on Preparation of sedimentation Manual (1971). “Sediment transportation mechanics: H. sediment discharge formulas.” Journal of the Hydraulic Division, ASCE, 97(4), 523–567. 42. Bagnold, R. A. (1966). “An approach to the sediment transport problem from general physical.” U.S. Geological survey Professional paper 422–J. 43. Bagnold, R. A. (1986). “Transport of solids by natural water flow: evidence for a worldwide correlation.” Proc. R. Soc. London., A 405, 369–374. 44. Bathurst, J. C., Graf, W. H., Cao, H. H. (1987). “Bed load discharge equations for steep mountain rivers”, In:Sediment Transport in Gravel-Bed Rivers, Thorne, C. R., Bathurst J. C. and Hey R. D. (eds), John Wiley & Sons Ltd., pp. 453-476. 45. Bathurst,J.C.(2007). “Effect of Coarse Surface Layer on Bed-Load Transport”, Journal of the Hydraulic Engineering, ASCE, Vol. 133, No. 11, November 1, 2007, 1192–1205. 46. Black, K. P., and Rosenberg, M. A. (1994). ‘‘Suspended sand measurements in a turbulent environment: Field comparison of optical and pump sampling techniques.’’ Coast. Engrg., 24, 137–150. Gao and O’Leary, 1997. 47. Blench, T.(1969)"Mobile-bed fluviology," University of alberta Press, Edmonton, Canada. 48. Clifford, N. J., Richards, K. S., Brown, R. A., and Lane, S. N. (1995). ‘‘Laboratory and field assessment of an infrared turbidity probe and its response to particle size and variation in suspended sediment concentration.’’ Hydro. Sci., Oxford, England, 40(6), 771–791. 49. Colby, B. R. (1956). The relationship of sediment discharge to streamflow, U. S. Geological Survey Open File Report, 170 p. 50. Colby, B. R. (1963). Fluvial sediments -a summary of source, transportation, deposition, and measurement of sediment discharge, U. S. Geological Survey Bulletin 1181–A, 47 p. 51. Colby, B. R. (1964). Discharge of sands and mean-velocity relationships in sand-bed streams, U. S. Geological Survey Professional Paper 462–A, 47 p. 52. Crickmore, M. J., Tazioli, G. S., Appleby, P. G., and Oldfield, F. (1990). The use of nuclear techniques in sediment transport and sedimentation problems, UNESCO, Paris. 53. Edwards, T. K., and Glysson, G. D. (1999). Field methods for measurement of fluvial sediment, U.S. Geological Survey, Techniques of Water-Resources Investigations, Applications of Hydraulics, Book 3, Chapter C2, 89p. 54. Einstein, H. A. (1950). “The bed-load function for sediment transport in open channel flows.” U.S. Department of Argriculture, Soil Conservation Service, Technical Bulletin No. 1026. 55. Einstein, H. A. and Chien, N. (1955). “Effects of heavy sediment concentration near the bed on velocity and sediment distribution.” MRD Sediment Serious NO. 8, Univ. of California, Institute of Engineering Research, Berkeley, Calif. 56. Engelund, F. and Hansen, E. (1972). “A monograph on sediment transport in alluvial streams.” Teknisk Forlag, Copenhagen. 57. Feng, W., Lin, C. P., Deschamps, R. J., and Drnevich, V. P. (1999). “Theoretical model of a multisection time domain reflectometry measurement system.” Water Resources Research, 35(8), pp. 2321-2331. 58. Garcia, M., and Parker, G. (1991). “Entrainment of bed sediment into suspension.” Journal of Hydraulic Engineering, 117(4), pp. 414-435. 59. Holmes, P.S. (1974)"Analysis and prediction of scour at railway bridges in New Zeaaland,"New Zealand Engineering, November, 313-320. 60. Hubbell, D. W. (1964). Apparatus and techniques for measuring bed load, USGS Water-Supply paper 1748, 74p. 61. Hunziker, R., and M. N. R. Jaeggi, 2002, “Grain sorting processes,” Journal of Hydraulic Engineering, 128(12), 1060-1068. 62. Interagency Committee (1957b). “The design of improved types of suspended sediment samplers.” Report No. 6, Subcommittee on Sedimentation, Federal Interagency RiverBasin Committee, Hydraulic Laboratory of the Iowa Institute of Hydraulic Research, Iowa City, Iowa. 63. Karaki, S. S., Gray, E. E., and Collins, J. (1961). “Dual channel stream monitor.” Journal of the Hydraulics Division, ASCE, 87(6), pp. 1-16. 64. Law, D. J., Bale, A. J., and Jones, S. E. (1997). ‘‘Adaptation of focused beam reflectance measurement to in-situ particle sizing in estuaries and coastal waters.’’ Marine Geol., Amsterdam, 140(1–2), 47–59. 65. Lu, J. Y., and Wu, I. Y. (1999). “Movement of Graded Sediment with Different Size Ranges.” International Journal of Sediment Research, 14(3): 9–22. 66. Lu, J. Y., and Su, C. C. (2005). “Transport of gravels with different ranges of grain sizes in a steep channel.” International Journal of Sediment Research, 20(2): 143-155. 67. Lu, J. Y., Su, C. C., and Wang C. Y. (2006). “Application of a portable measuring system with acoustic Doppler current profiler to discharge observations in steep rivers.” Journal of Flow Measurement and Instrumentation, 17(3): 179–192. 68. Lu, J.Y., Hong, J.H, Su, C.C., Wang, C.Y., and Lai, J.S. (2008). “Field measurements and simulation of bridge scour-depth variations during floods.” Journal of Hydraulic Engineering, ASCE, 134(6): 810-821. 69. Maza Alvarez, J.A. and Echavarria alfaro, F.J. (1973). “Contribution to the study of general scour.” Proc., International Symposium on River mechanics, O.A.H.R., Bangkok, Thailand, 795-803. 70. Melville, B. W., and Coleman, S. E. (2000). Bridge scour. Water Resources Publications, Highlands Ranch, Colorado. 71. Meyer-Peter, E., and Muller, R. (1948). “Formula for bed-load transport.” Proceeding of International Association for Hydraulic Research, 2nd meeting, Stockholm. 72. Milhous, R. T. (1973). Sediment transport in a gravel-bottomed stream, unpublished Ph.D. thesis, Oregon State Univ., Corvallis. 73. Milhous, T. (1987). Discussion: bedload transport measurement by the vortex-tube trap on Virginio Creek, Italy. In: Thorne, C.R., Buthurst, J.C., Hey, R.D._Eds.., Sediment Transport in Gravel-bed Rivers. Wiley, Chichester, pp. 611–614. 74. Mizuyama, T. (1977). Bedload transport in steep channels. Doctoral thesis, Kyoto University, Kyoto, Japan, 118 pp. 75. Nelson, M. E., and Benedict, P. C. (1950). ‘‘Measurement and analysis of suspended-sediment loads in streams.’’ Trans. ASCE, Vol. 116, 891–918. 76. Parker, G. (1978). "Self-formed straight channels with equilibrium banks and mobile bed. Part 2. The gravel river." J. Fluid Mech., 89(1), 127-146. 77. Parker, G. (1990). “Surface-based bedload transport relationship for gravel rivers.” Journal of Hydraulic Research, 28(4), 417–436. 78. Parker, G., Klingeman, P. C. and MaLean, D. G. (1982). “Bed load and size distribution in paved gravel-bed streams.” Journal of Hydraulic Division, ASCE, 108(4), 544–571. 79. Pemberton, E. L. and Lara, J. M.(1984). “Computing degradation and local scour,” Technical Guideline for Bereau of Reclamation, Engineering and Research centre, Bureau of Reclamation, Denver, Colorado, U.S.A.,55pp. 80. Powell, D. M., Reid, I. and Laronne, J. B. (2001). “Evolution of bedload grain-size distribution with increasing flow strength and the effect of flow duration on the caliber of bedload sediment yield in ephemeral gravel-bed rivers,” Water Resources Research, 37(5), 1463-1474. 81. Powell, D. M., Laronne, J. B. and Reid, I. (2003). “The dynamics of bedload sediment transport in low-order, upload, ephemeral gravel-bed rivers.” Advances in Environmental Monitoring and Modelling, 1(2), http://www.kcl/ac/uk/advances/. 82. Rouse, H. (1937). “Modern concept of the mechanics of turbulence.” Transaction of the ASCE, vol. 102, 4630. 83. Schat, J. (1997). ‘‘Multifrequency acoustic measurement of concentration and grain size of suspended sand in water.’’ J. Acoustic Soc. of Am., 101(1), 209–217. 84. Schoklitsch, A. (1934). “Der geschiebetrieb und die geschiebefracht.” Wasserkraft und Wasserwirtshaft, 29(4), 37–43. 85. Schoklitsch, A. (1949). “Berechung der geschiebefracht.” Wasser und Energiewirtschaft, Nr. 1. 86. Schoklitsch, A. (1962). Handbuch des Wasserbaues, 3rd edn. Springer, Wien. 87. Shen, H. W. (1971). River Mechanics, Volume I, P.O. Box 606, Fort Collins, Colorado, U.S.A. 88. Shields, A. (1936). “Anwendung der ahnlichkeitsmechanik und turbulenz forschung auf die geschiebebewegung.” Mitteil. Preuss. Versuchsanst. Wasser, Erd, Schiffsbau, Berlin, Nr. 26. 89. Simons, D. B., Sentürk, F. (1992). Sediment transport technology, Water Resources Publications, Littleton, Colorado, USA. 90. Smart, G. M., and Jaeggi, M. N. R. (1983). “Sediment transport on steep slopes”, Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrologie und Giaziologie, Eidgenossischen Technischen Hochschule, Zurich,No. 64, pp. 94-95, 100-117, 184, 187. 91. Smart, G. M. (1984). “Sediment transport formula for steep channels”, J. Hydraul. Engrg. ASCE, 110(3), pp.267-276. 92. Takahashi, T. (1987). “High velocity flow in steep erodible channels”, Proc. 22nd IAHR Congress, Lausanne, Vol. Fluvial Hydraulics, pp.42-53. 93. Takahashi, T. and Sawada, T. (1994). “Bed load prediction in steep Mountain rivers”, In, HYDRAULIC ENGINEERING‘94, VOLUME 1, Cotroneo G. V. and Rumer R. R. (eds), pp. 810-814. 94. Thorne, P. D., Waters, K. R., and Brudner, T. J. (1995). ‘‘Acoustic measurements of scattering by objects of irregular shape.’’ J. Acoustic Soc. of Am., 97(1), 242–251. 95. van Rijn, L. C. (1982). “Equivalent roughness of alluvial bed.” Journal of Hydraulic Engineering, ASCE, 108(10), 1215–1218. 96. van Rijn, L. C. (1984). “Sediment transport, part I : bed load transport.” Journal of Hydraulic Engineering, ASCE, 110(10), 1431–1456. 97. van Rijn, L. C. (1984). “Sediment transport, part II : suspended load transport.” Journal of Hydraulic Engineering, ASCE, 110(11), 1613–1641. 98. van Rijn, L. C. (1993). Principles of sediment transport in rivers, estuaries and coastal seas, Aqua Publications, Amsterdam. 99. Vanoni, V. A. (2006). Sedimentation Engineering, Amer. Soc. Civil. Engrs., 317–436. 100. Wang, C. Y., Lu, J. Y., and Su, C. C. (2002). “Development and Application of an Efficient Method to River Discharge Measurement.” International Journal of Sediment Research, 17(2): 137–146. 101. Wren, D. G., Barkdoll , B. D., Kuhnle, R. A., and Derrow R. W. (2000). “Field techniques for suspended-sediment measurement.” Journal of Hydraulics Engineering, ASCE, 126(2): 97–104. 102. Wright, S., and Parker, G. (2004). “Density stratification effects in sand-bed rivers,” Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 8, 2004, 783–795. 103. Wilcock, P. R., S. T. Kenworthy and J. C. Crowe, (2001). “Experimental study of the transport of mixed sand and gravel,” Water Resources Research, 37(12), 3349-3358. 104. Wilcock, P. R., and J. C. Crowe, (2003). “Surface-based transport model for mixed-size sediment,” Journal of Hydraulic Engineering, 129(2), 120-128. 105. Wright, S., and Parker, G. (2004). “Flow resistance and suspended load in sand-bed rivers: simplified stratification model,” Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 8, 2004, 796–805. 106. Wu, W., Wang, S. S.Y., and Jia, Y. (2000). “Nonuniform sediment transport in alluvial rivers.” Journal of Hydraulic Research, 38(6), 427–434. 107. Yang, C. T. (1973). “Incipient motion and sediment transport.” Journal of the Hydraulics Division, ASCE, 99(10), Proceeding Paper 10067, 1679–1704. 108. Yang, C. T. (1976). “Minimum unit stream power and fluvial hydraulics.” Journal of the Hydraulics Division, ASCE, 102(7), Proceeding Paper 12238, 919–934. 109. Yang, C. T. (1984). “Unit Stream Power Equation for Gravel”, J. Hydraul. Engrg., ASCE, 110(12), pp.1783-1798. 110. Yang, C. T., Molinas A. and Wu B. (1996). “Sediment transport in Yellow River.” Journal of the Hydraulic Engineering, ASCE, 122(5), 237–244. 111. Yang, C. T. and Song, C. C. S. (1979). “Theory of minimum rate of energy dissipation.” Journal of hydraulics division, ASCE, 105(7), Proceeding paper 14677, 769–784. 112. Yang, C. T. and Simões, F. J. M. (2005). “Wash load and bed-material load transport in the Yellow River.” Journal of the Hydraulic Engineering, ASCE, 131(5), 413–418.zh_TW
dc.description.abstractA series of field experiments were conducted to collect sediment discharges, scour depths and hydraulic data during Typhoons Kalmaegi, Fung-Wong, Sinlaku, Jangmi and Morakot ( ) at the Da-Chia River Highway Bridge and Houfeng Bridge. The main objectives are to increase our understanding of the variations of the sediment transport characteristics and to evaluate the suitability of the commonly used sediment transport and general scour formulas for the lower Da-Chia River after the Chi-Chi Earthquake. The experimental results revealed that some of the high-flow hydraulic characteristics data are difficult to observe. Alternatively, the mean flow velocity and flow depth are calculated from the water surface velocity-mean velocity relationship, and the resistence equation (log-law), respectively, which were calibrated (including the representative roughness) using the data collecting during the low and medium flows. Based on the unit sediment discharges calculated from the commonly used formulas and the statistical analysis, the sediment transport formulas applicable to the gravel-bed Da-Chia River are recommended. In addition, an empirical formula was developed for the prediction of the short-term maximum general scour depth induced by a flood based on the data collected in this study and those collected by Lu et al. (2003-2005) in the Cho-Shui River. The regression equation includes four independent varianbles, i.e. unit flow discharge, water surface slope, median sediment size and the standard deviation of the bed material. It was found that the maximum scour depths predicted by the formula developed in this study are closer to the measured values as compared to those predicted by Blench's (1969) formula. However, the available data are still limited. It is recommended to collect more reliable data to verify or revise the formula.en_US
dc.description.abstract為瞭解大甲溪下游於中部集集大地震後之輸砂特性,並評估常用輸砂及一般沖刷公式之適用性,本研究乃於大甲溪公路橋與后豐大橋附近進行颱洪時期(卡玫基、鳳凰、辛樂克、薔蜜及莫拉克颱風, )之水理、輸砂觀測及沖刷試驗。 研究結果顯示,部分颱洪中高流量水理特性觀測不易,可藉由現有垂線中低流量實測垂線平均流速,配合阻力經驗公式,率定河段床砂糙率代表粒徑,進而推求垂線平均流速及水深。應用相關水力參數,將常用輸砂公式所推估之單寬床砂載進行比較與統計分析後,本研究初步提出較適用於大甲溪卵礫石型河川之床砂載輸砂公式。 此外,根據本研究試驗資料並配合盧昭堯等人(2003~2005)於濁水溪實測資料,經迴歸分析,獲得一包含單寬流量 、水面坡降 、中值粒徑 及粒徑分佈因子 之短期洪水最大一般沖刷深度經驗公式。經與Blench(1969)公式進行比較分析,發現本研究推導之經驗公式,其推估值較為合理,惟目前試驗資料有限,未來仍應積極收集國內陡坡天然河川資料,以供進一步之驗證或修正。zh_TW
dc.description.tableofcontents謝誌 I 摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 符號說明 IX 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 1 1-3 研究目的 4 1-4 本文組織 4 第二章 文獻回顧 8 2-1 沖瀉載與床砂載之劃分 8 2-2 輸砂理論公式 10 2-2.1 推移載 ( Bed load ) 10 2-2.2 床砂載 ( Bed material load ) 20 2-3 水流阻力公式 26 2-4 一般沖刷 ( General scour ) 28 第三章 研究方法 34 3-1 大甲溪流域概況 34 3-2 觀測位址簡介 38 3-3 試驗儀器 43 3-4 試驗步驟 50 3-4.1 水理量測及懸砂採樣 51 3-4.2 一般沖刷與hms 52 3-4.3 最高水位洪水尺 54 3-4.4 泥砂濃度及粒徑分析 56 第四章 現地試驗 59 4-1 颱洪觀測 59 4-1.1 水理及懸砂量測 59 4-1.2 垂線平均水理及懸砂平均濃度 66 4-1.3 水面坡降 67 4-2 颱洪最大一般沖刷深度 68 4-3 河床質 70 第五章 結果分析 74 5-1 表面流速與平均流速關係 74 5-2 水流阻力 74 5-3 沖瀉載劃分粒徑與Z值探討 75 5-4 推移載估算 79 5-5 懸移床砂載估算 80 5-6 床砂載推估比較 81 5-7 最大一般沖刷深度 86 第六章 結論與建議 91 6-1 結論 91 6-2 建議 93 參考文獻 94 附錄A 102 颱洪實測Z值 102 (1)鳳凰颱風(2008/07/29) 102 (2)辛樂克颱風(2008/09/16) 106 (3)薔蜜颱風(2008/09/29) 107zh_TW
dc.subjectmaximum general scour depthen_US
dc.subjectbed material loaden_US
dc.subjectbed loaden_US
dc.subjectsediment transport formulaen_US
dc.titleSediment transport characteristics of gravel-bed streams-Case study of lower Da-Chia riveren_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:土木工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.