Please use this identifier to cite or link to this item:
標題: 網版印刷電泳-電化學晶片測試
Electrochemical Detection Using Screen-Printed Electrodes in Microchip
作者: 簡煜修
Chien, I-Hsiu
關鍵字: electrophoresis;電泳;electrochemical detection;FEMLAB;電化學;檢測;FEMLAB
出版社: 機械工程學系所
引用: [1] D. A. Skoog, Principles of Instrumental Analysis, 5th edition. pp. 733-734, 1997 [2] M. Melvim, Electrophoresis. Wiley, 1987 [3] S. Hjerten , Free zone electrophoresis, Chromatogr Rev 9: 122-129 [4] F. E. P. Mikkers, F. M. Everaerts, Th. P. E. M. Verheggen, High-performance zone electrophoresis, J. Chromatogr. 1997, 169, 11-20 [5] J. W. Jorgenson, K. D. Lukacs, Zone electrophoresis in open-tubular glass capillaries, Anal. Chem. 1981, 53, 1298-1302 [6] A. G. Ewing, Capillary zone electrophoresis with electrochemical detection, Anal. Chem. 1987, 59, 1762-1766 [7] R. P. Baldwin, Recent development of electrochemical detection in capillary electrophoresis , Electrophoresis. 2000, 21, 4017-4028 [8] Q. Wang, F, Ding, N. Zhu, P. He, Y. Fang, Determination of compositions of polysaccharides from Chinese herbs by capillary zone electrophoresis with amperometric detection, Biomed. Chromatogr. 2003, 17, 483-488 [9] R. P. Baldwin, T. J. Roussel, Jr., M. M. Crain, Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device, Anal. Chem. 2002, 74, 3690-3697 [10] J. Wang, Electrochemical detection for capillary electrophoresis microchips: a review, Electroanalysis, 2005, 17, No.13, 1113-1140 [11] Y. Du, J. Yan, W. Zhou, X. Yang, E. Wang, Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips, Electrophoresis, 2004, 25, 3853-3859 [12] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamental apillary electrophoresis, Anal. Chem. 1993, 65,2497-2501 [13] W. T. Kok, Y Sahin, Solid-state field decoupler for off-column detection in cayholm, C. E. Lunte, End-column amperometric detection in capillary electrophoresis: influence of separation-related parameters on observed half-wave potential for dopamine and catechol, Anal. Chem. 1999, 71, 544-549 [14] W. Lu, R. M. Cassidy, Background noise in capillary electrophoretic amperometric detection, Anal. Chem. 1994, 66, 200-204 [15] S. Park, S. M. Lunte, C. E. Lunte, A perfluorosulfonated ionomer joint for capillary electrophoresis with on-column electrochemical detection, Anal. Chem. 1995, 67, 911-918 [16] F. M. Matysik, Improved end-column amperometric detection for capillary electrophoresis, J. Chromatography A, 1996, 742, 229-234 [17] S. R. Wallenborg, L. Nnd Applications, 2nd edition, Wiley, 2001 [18] O. Klett, F. Bjorefors, L. Nyholm, Elimination of high-voltage field effects in end column electrochemical detection in capillary electrophoresis by use on chip microband electrode, Anal. Chem. 2001, 73, 1909-1915 [19] F. M. Matysik, A. Meister, G. Werner, Electrochemical detection with microelectrode in capillary flow system, Analytica Chimica Acta, 1995, 305, 114-120 [20] A. Manz, N. Graber, H. M. Winder, Miniaturized total chemical analysis system: A novel concept for chemical sensing, Sensors and Actuator B1, 1990, 224-248 [21] A. Manz, D. J. Harrison, Planar chips technology for miniaturization and integration of separation techniques into monitoring systems : Capillary electrophoresis on a chip, J. Chromatogr. 1992, 593, 253-258 [22] S. C. Jacobson, J. M. Ramsey, Integrated microdevice for DNA restriction fragment analysis, Anal. Chem. 1996, 68, 720-723 [23] A. T. Woolley, K. Lao, A. N. Glazer, R. A. Mathies, Capillary electrophoresis chips integrated electrochemical detection, Anal. Chem. 1998, 70, 684-688 [24] D. C. Chen, F. L. Hsu, D. Z. Zhan, C. H. Chen, Palldium film decoupler for amperometric detection in electrophoresis chips, Anal. Chem. 2001, 73, 758-762 [25] C. C. Wu, R. G. Wu, Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection, Anal. Chem. 2003, 75, 947-952 [26] T. Fujii, PDMS-based microfluidic device for biomedical applications, Microelectronic Engineering, 2002, 61-62, 907-914 [27] N. A. Lacher, S. M. Susan, Development of microfabricated palladium decoupler/electrochemical detectoer for microchip capillary electrophoresis using a hybrid glass /poly(dimethylsiloxane) device, Anal. Chem. 2004, 76, 2482- 2491 [28] X. Huang, W. T. Kok, Determination of thoils by capillary electrophoresis with electrochemical detection using a palladium field-decoupler and chemically modified electrodes, J. Chromatogr. A, 1995, 716, 347-353 [29] S. P. Susan, S. M. Lunte, C. E. Lunte, A perfluorosulfanted ionomer joint for capillary electrophoresis with on-column electrochemical detection, Anal. Chem. 1995, 67, 911-918 [30] S. Park, C. E. Lunte, perfluorosulfanted ionomer end-column electrical decoupler for capillary electrophoresis/electrochemical detection, Anal. Chem. 1995, 67, 4366-4370 [31] O. Klett, L Nyholm, Seperation high voltage field driven on chip amperometric detection in capillary electrophoresis, Anal. Chem. 2003, 75, 1245-1250 [32] J. Wang, B. Tian, E. Sahlin, Micromachined electrophoresis chip with thick-film electrochemical detectors, Anal. Chem. 1999, 71, 5436-5440 [33] R. H. Horng, H. Y. Chen, PMMA-based capillary electrophresis electrochemical detection microchip fabrication, J. Micromach. Microeng. 2005, 15, 6-10 [34] Y. Shih, J. M. Zen, Voltammetric determination of kojic acid in cosmetic bleaching products using a disposable screen-printed carbon electrode, Electroanalysis, 1999, 11, No.4, 229-233 [35] M. D. Gonzalez, C. F. Sanchez, Comparative voltammetric behavior of indigo carmine at screen-printed carbon electrodes, Electroanalysis, 2002, 14, No.10, 665-670 [36] R. Kuhn, S. Hoffstetter-Kuhn, capillary electrophoresis principles and practice, Springer Laboratory, 1993 [37] J. Wang, Analytical Electrochemistry, 2nd edition. Wiley, 2000 [38] B. Sun, J. S. Kuo, Fast initial chemical reaction with laser-induced breakdown of a nanoscale partition, Langmuir, 2004, 20, 9437-9440 [39] P. S. Dobson, J. Weaver, Chareacterization of batch microfabricated scanning electrochemical-atomic force microscopy probe, Anal. Chem. 2005, 77, 424-434 [40] J. Chung, K. H. Lee, Toward large-scale integration of carbon nanotubes, Langmuir, 2004, 20, 3011-3017 [41] B. J. Kirby, E. F. Hasselbrink Jr, Zeta potential of microfluidic substrates: 2. Data for polymers, Electrophoresis, 2004, 25, 203-213 [42] F. M. Matysik, A. Meister, G. Werner, Electrochemical detection with microelectrodes in capillary flow system, 1994, 350, 114-120

The goal of this study is to use the capillary electrophoresis effect to separate the neurotransmitters dopamine and catechol on the self-made hybrid micro-fluidic chip which integrated with electrochemical detection(ECD) electrode to detect the signal of separated sample.
At first, we use finite element analysis software: FEMLAB to simulate the electrokinetic flow condition and the substances migration under the electrokinetic force in the microchannel. According to the computer simulation results, we can design the shape and the position of the electrochemical electrodes.
Thereafter, we address the micro fabrication process of the chip and check the performance of the completed chips.
The tests show that the self-made micro-fluidic chips had been successfully in separation of dopamine and catechol in an effective manner by contrast with traditional capillary electrophoresis. Furthermore, the ECD techniques had been well integrated with capillary electrophoresis on the micro-fluidic chip, too
其他識別: U0005-1807200615121000
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.