Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16299
標題: 應用多時期衛星影像於九九峰植生復育與崩塌潛勢分析
Estimation Vegetation Recovery and Landslide Potential with Multi-date Satellite Images in Jou-Jou Mountain
作者: 張益祥
Chang, Yi-Hsinag
關鍵字: vegetation recovery model;植生復育模型;NDVI (Normalized Difference Vegetation Index);instability index;landslide potentia;常態化差異植生指標(NDVI);不安定指數;崩塌潛勢分析
出版社: 土木工程學系所
引用: 1. 行政院農業委員會水土保持局,2004,七二水災崩塌地判釋與分析報告。 2. 江山宏、陳玉妹、羅健霖、林文賜,2005,九九峰崩塌地變遷監測之研究,台灣地理資訊學會年會暨學術研討會。 3. 江山宏,2005。九九峰崩塌地變遷之研究,明道管理學院環境規劃暨設計碩士論文。 4. 何春蓀,1954,臺灣苗栗南莊煤田地質,臺灣省地質調查所彙刊,第6 號,pp.1-36。 5. 吳佐川,1993,台灣地區崩塌地區域特性之研究,國立台灣大學森林學研究所碩士論文。 6. 吳柏毅,2006,台灣中部地區崩塌地影響因子之分析研究,國立中興大學土木工程學系碩士論文。 7. 高嘉隆,2003,台十四省道31~75K 沿線邊坡山崩潛感分析,朝陽科技大學營建工程系碩士論文。 8. 陳樹群、吳俊鋐,2005,集集地震引發九九峰地區之崩塌形態探討,中華水土保持學報,36(1),pp.101-112。 9. 陳添水,2005,九九峰地區九二一地震崩塌植生指數變遷分析,特有生物研究,7(2),pp.63-75。 10. 陳蕙華,2005,遙測衛星影像於南清公路崩塌地潛感分析之應用,逢甲大學環境資訊科技研究所。 11. 陳意璇,2002,溪頭地區山崩潛感圖製作研究,國立台灣大學土木工程學研究所碩士論文。 12. 陳珠燕,1989,利用SPOT 衛星資料研究山區植被光譜特性,國立中央大學大氣物理研究所論文。 13. 曾聖權,2005,SPOT 衛星影像應用於陳有蘭溪流域崩塌調查之研究,朝陽科技大學營建工程系。 14. 黃聖慈,2008,以GIS探討台灣濁水溪與烏溪上游崩塌地之影響因子,國立中興大學土木工程研究所碩士論文。 15. 楊明德、許展祥、洪蜜琪、劉益誠,2006,九九峰地區多時期衛星影像之植被復育研究,第二十五屆測量及空間資訊研討會,桃園。 16. 葛國平,1990,衛星山區植被雙向反射特性之研究,國立中央大學大氣物理研究所碩士論文。 17. 鄭嘉盈,1999,遙測在坡地災害評估之應用研究,國立成功大學土木工程學研究所碩士論文。 18. 劉益誠,2008,應用衛星影像於921災後九九峰植生復育崩塌潛感,國立中興大學土木工程研究所碩士論文。 19. 劉秀鳳,2005,應用類神經網路評估台14線公路邊坡崩壞潛能之研究,朝陽科技大學營建工程研究所碩士論文。 20. 蘇苗彬,2009,應用不安定指數法於坡地崩塌之潛勢分析,水保技術,4(1) ,pp.9-23 21. 蘇苗彬、蔡顯修、簡李濱,1998,集水區坡地安定評估之計量分析方法,水土保持學報,29(2) ,pp. 105-114。 22. 蕭志全,2006,應用衛星影像建立災後植生復育模型,國立中興大學土木工程研究所碩士論文。 23. 中央地質調查所:http://www.moeacgs.gov.tw/main.jsp 24. Lillesand, T.M., R.W. Kiefer, J.W. Chipman, “Remote Sensing And Image Interpretation 5E”, Wiley, 2004. 25. Lin, C. Y , H . M. Lo, W. C. Chou, W. T. Lin,2004. Vegetation recovery assessment at the Jou-Jou Mountain landslide area caused by the 921 Earthquake in Central Taiwan, Ecological Modelling. 176:75–81. 26. Murray, J.D., 1989, Mathematical Biology. Springer-Verlag, New York. 27. Olsson, H., 1993, Regression functions for multitemporal relative calibration of thematic mapper data over boreal forest, Remote sensing of Environment 46:89-102. 28. Schott, I.R., Salvaggio, C., and Volchok, W.J.(1988),Radiometric scene normalization using pseudoinvariant features. Remote Sens. Environ. 26:1-16. 29. Song, C., Woodcock, C.E., Seto, K.C., Pax Lenney, M., and Macomber, S.A. (2001), Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens. Environ. 75:230-244. 30. Yuan, D., and Elvidge, C.D. (1996), Comparison of relative radiometric normalization techniques. ISPRS J. Remote Sens. 51:117-126.
摘要: 
Vegetation has been considered a great contribution to the prevention andmitigation of landslides. Joujou Mountain is one case of the serious landslides induced by the Chi-Chi earthquake. If we could predict the recovery pattern ofvegetation, it can be estimated what the natural power will do to the landslide, how to adopt appropriate recovery strategies, and when to expect an ideal vegetation recovery.
With the analysis of SPOT satellite images taken before and after the Chi-Chi earthquake in Joujou Mountain, this research aims to establish the vegetation recovery model in Joujou Mountain since the earthquake. Shot before 921 earthquake, the image taken on 1999/04/01 is adopted as a reference image and compared with the multi-date images (1999-2009). Through NDVI (Normalized Difference Vegetation Index), an overall vegetation condition can be estimated by remote sensing data. In a change detection using multi-date images, a proper radiometric correction is particularly important for an analysis of multi-date images. To decrease the radiometric error, Linear Regression Normalization based on artificial structures, was employed in this study in addition to the simple radiometric correction of NDVI itself.
In this research, the variation of NDVI generated from radiometrically corrected SPOT images is used to represent the variation of vegetation in different phases. The image classification was processed to identify the landslide area, vegetation covered area, and river bank prior to NDVI estimation. The vegetation recovery model was derived from a general growth equation and obtained as VRR(t) = Aet + B in which A and B are constants and were obtained through regression based on the raw data of NDVI. In addition, the vegetation recovery model was modified by eliminating the seasonal effect and Mundulle Typhoon influence with a significant improvement of regression statistic (R-square from 0.866 to 0.975). This model is capable of describing the vegetation recovery rate at a given time in Joujou Mountain. Furthermore, several environmental factors, including elevation, slope, aspect, and so on were considered to in thelandslide potential evaluation.

植生對山坡地的崩塌防治相當之貢獻,若能掌控崩塌潛勢與植生復育的狀況,將能有效的推估崩塌高潛勢地區與復育所需要的時間,依據不同的地點與復育程度,採取不同之因應對策。本研究利用九九峰地區921 之後不同時期(1999-2009)之衛星影像,觀察植生受損害崩塌地範圍內NDVI 變化值代表植生覆蓋情形。並採用921 地震前之SPOT 衛星作為地震後植生復育情形之對照組,用來評估復育情形能否回覆至該時期影像之植生覆蓋狀況。
NDVI 之公式設計可以消除大致的輻射偏差量,但欲分析模擬植生生長過程作多時期變遷分析,每個時期的影像就必須準確有效校正。本研究在分析前加入影像分類之步驟,以確定分析目標確為崩塌地且無受河道變遷影響。本研究利用線性迴歸法進行輻射校正。研究利用不安定指數法,對坡度、坡向、高程、植生、水系及地質等六項因子進行分析,求得各因子之不安定指數及權重,套疊分析後將危險程度分為五個層級,分析九九峰地區之高危險範圍之變遷並展示多時期崩塌潛勢圖。本研究利用生物量生長模型,迴歸求得理想植生復育模型VRR(t) = Aet + B ,推算A 與B 之常數值,並推估在理想的狀況下,九九峰植生復育率與時間關係。研究分析植生良好區域可以了接植生隨季節的震盪情況,且研究期間逢七二水災此一突發性事件,由成果可見洪災影響不如地震般劇烈,僅出現部份小程度折減,約使植生復育進度倒退約1.5年,為模擬理想狀態植生復育,本研究採用兩種回歸修正方式分別以修正植生震盪情形與七二水災後之資料平移回歸植被復育模式,得到兩種回歸模式R2值分別達0.866及0.975,顯示整合光譜效正、土地分類有助提升回歸模式之可信度。
URI: http://hdl.handle.net/11455/16299
其他識別: U0005-2308201013374400
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.