Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1629
DC FieldValueLanguage
dc.contributor陳炎洲zh_TW
dc.contributorYen-Cho Chenen_US
dc.contributor楊錫杭zh_TW
dc.contributorHsi-Harng Yangen_US
dc.contributor.advisor簡瑞與zh_TW
dc.contributor.advisorRei-Yu Cheinen_US
dc.contributor.author簡煜修zh_TW
dc.contributor.authorChien, I-Hsiuen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-05T11:41:16Z-
dc.date.available2014-06-05T11:41:16Z-
dc.identifierU0005-1807200615121000zh_TW
dc.identifier.citation[1] D. A. Skoog, Principles of Instrumental Analysis, 5th edition. pp. 733-734, 1997 [2] M. Melvim, Electrophoresis. Wiley, 1987 [3] S. Hjerten , Free zone electrophoresis, Chromatogr Rev 9: 122-129 [4] F. E. P. Mikkers, F. M. Everaerts, Th. P. E. M. Verheggen, High-performance zone electrophoresis, J. Chromatogr. 1997, 169, 11-20 [5] J. W. Jorgenson, K. D. Lukacs, Zone electrophoresis in open-tubular glass capillaries, Anal. Chem. 1981, 53, 1298-1302 [6] A. G. Ewing, Capillary zone electrophoresis with electrochemical detection, Anal. Chem. 1987, 59, 1762-1766 [7] R. P. Baldwin, Recent development of electrochemical detection in capillary electrophoresis , Electrophoresis. 2000, 21, 4017-4028 [8] Q. Wang, F, Ding, N. Zhu, P. He, Y. Fang, Determination of compositions of polysaccharides from Chinese herbs by capillary zone electrophoresis with amperometric detection, Biomed. Chromatogr. 2003, 17, 483-488 [9] R. P. Baldwin, T. J. Roussel, Jr., M. M. Crain, Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device, Anal. Chem. 2002, 74, 3690-3697 [10] J. Wang, Electrochemical detection for capillary electrophoresis microchips: a review, Electroanalysis, 2005, 17, No.13, 1113-1140 [11] Y. Du, J. Yan, W. Zhou, X. Yang, E. Wang, Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips, Electrophoresis, 2004, 25, 3853-3859 [12] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamental apillary electrophoresis, Anal. Chem. 1993, 65,2497-2501 [13] W. T. Kok, Y Sahin, Solid-state field decoupler for off-column detection in cayholm, C. E. Lunte, End-column amperometric detection in capillary electrophoresis: influence of separation-related parameters on observed half-wave potential for dopamine and catechol, Anal. Chem. 1999, 71, 544-549 [14] W. Lu, R. M. Cassidy, Background noise in capillary electrophoretic amperometric detection, Anal. Chem. 1994, 66, 200-204 [15] S. Park, S. M. Lunte, C. E. Lunte, A perfluorosulfonated ionomer joint for capillary electrophoresis with on-column electrochemical detection, Anal. Chem. 1995, 67, 911-918 [16] F. M. Matysik, Improved end-column amperometric detection for capillary electrophoresis, J. Chromatography A, 1996, 742, 229-234 [17] S. R. Wallenborg, L. Nnd Applications, 2nd edition, Wiley, 2001 [18] O. Klett, F. Bjorefors, L. Nyholm, Elimination of high-voltage field effects in end column electrochemical detection in capillary electrophoresis by use on chip microband electrode, Anal. Chem. 2001, 73, 1909-1915 [19] F. M. Matysik, A. Meister, G. Werner, Electrochemical detection with microelectrode in capillary flow system, Analytica Chimica Acta, 1995, 305, 114-120 [20] A. Manz, N. Graber, H. M. Winder, Miniaturized total chemical analysis system: A novel concept for chemical sensing, Sensors and Actuator B1, 1990, 224-248 [21] A. Manz, D. J. Harrison, Planar chips technology for miniaturization and integration of separation techniques into monitoring systems : Capillary electrophoresis on a chip, J. Chromatogr. 1992, 593, 253-258 [22] S. C. Jacobson, J. M. Ramsey, Integrated microdevice for DNA restriction fragment analysis, Anal. Chem. 1996, 68, 720-723 [23] A. T. Woolley, K. Lao, A. N. Glazer, R. A. Mathies, Capillary electrophoresis chips integrated electrochemical detection, Anal. Chem. 1998, 70, 684-688 [24] D. C. Chen, F. L. Hsu, D. Z. Zhan, C. H. Chen, Palldium film decoupler for amperometric detection in electrophoresis chips, Anal. Chem. 2001, 73, 758-762 [25] C. C. Wu, R. G. Wu, Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection, Anal. Chem. 2003, 75, 947-952 [26] T. Fujii, PDMS-based microfluidic device for biomedical applications, Microelectronic Engineering, 2002, 61-62, 907-914 [27] N. A. Lacher, S. M. Susan, Development of microfabricated palladium decoupler/electrochemical detectoer for microchip capillary electrophoresis using a hybrid glass /poly(dimethylsiloxane) device, Anal. Chem. 2004, 76, 2482- 2491 [28] X. Huang, W. T. Kok, Determination of thoils by capillary electrophoresis with electrochemical detection using a palladium field-decoupler and chemically modified electrodes, J. Chromatogr. A, 1995, 716, 347-353 [29] S. P. Susan, S. M. Lunte, C. E. Lunte, A perfluorosulfanted ionomer joint for capillary electrophoresis with on-column electrochemical detection, Anal. Chem. 1995, 67, 911-918 [30] S. Park, C. E. Lunte, perfluorosulfanted ionomer end-column electrical decoupler for capillary electrophoresis/electrochemical detection, Anal. Chem. 1995, 67, 4366-4370 [31] O. Klett, L Nyholm, Seperation high voltage field driven on chip amperometric detection in capillary electrophoresis, Anal. Chem. 2003, 75, 1245-1250 [32] J. Wang, B. Tian, E. Sahlin, Micromachined electrophoresis chip with thick-film electrochemical detectors, Anal. Chem. 1999, 71, 5436-5440 [33] R. H. Horng, H. Y. Chen, PMMA-based capillary electrophresis electrochemical detection microchip fabrication, J. Micromach. Microeng. 2005, 15, 6-10 [34] Y. Shih, J. M. Zen, Voltammetric determination of kojic acid in cosmetic bleaching products using a disposable screen-printed carbon electrode, Electroanalysis, 1999, 11, No.4, 229-233 [35] M. D. Gonzalez, C. F. Sanchez, Comparative voltammetric behavior of indigo carmine at screen-printed carbon electrodes, Electroanalysis, 2002, 14, No.10, 665-670 [36] R. Kuhn, S. Hoffstetter-Kuhn, capillary electrophoresis principles and practice, Springer Laboratory, 1993 [37] J. Wang, Analytical Electrochemistry, 2nd edition. Wiley, 2000 [38] B. Sun, J. S. Kuo, Fast initial chemical reaction with laser-induced breakdown of a nanoscale partition, Langmuir, 2004, 20, 9437-9440 [39] P. S. Dobson, J. Weaver, Chareacterization of batch microfabricated scanning electrochemical-atomic force microscopy probe, Anal. Chem. 2005, 77, 424-434 [40] J. Chung, K. H. Lee, Toward large-scale integration of carbon nanotubes, Langmuir, 2004, 20, 3011-3017 [41] B. J. Kirby, E. F. Hasselbrink Jr, Zeta potential of microfluidic substrates: 2. Data for polymers, Electrophoresis, 2004, 25, 203-213 [42] F. M. Matysik, A. Meister, G. Werner, Electrochemical detection with microelectrodes in capillary flow system, 1994, 350, 114-120en_US
dc.identifier.urihttp://hdl.handle.net/11455/1629-
dc.description.abstract本研究主要是在探討微流體晶片中,毛細電泳效應對神經傳導物質dopamine與catechol的分離效果,並搭配電化學檢測方式來對分離後的的目標檢體做偵測。 在晶片的設計上,本文利用有限元素分析軟體FEMLAB預先模擬微流場中,檢體樣本的移動情形以及擴散的狀況,並藉此模擬的結果作為晶片電化學電極設計的依據。 在晶片的製造上,結合微影製程技術、網版印刷技術、熱壓接合技術製作出以碳作為電極材料、厚膜光阻JSR為結構的複合式微流體晶片。 測試結果發現,自製複合式微流體晶片成功的分離了dopamine與catechol,並且搭配電化學檢測技術成功的偵測到了分離後的檢體訊號。在100V到400V的外加電壓範圍內,檢體樣本的移動速度與外加電壓大致呈現線性關係。zh_TW
dc.description.abstractThe goal of this study is to use the capillary electrophoresis effect to separate the neurotransmitters dopamine and catechol on the self-made hybrid micro-fluidic chip which integrated with electrochemical detection(ECD) electrode to detect the signal of separated sample. At first, we use finite element analysis software: FEMLAB to simulate the electrokinetic flow condition and the substances migration under the electrokinetic force in the microchannel. According to the computer simulation results, we can design the shape and the position of the electrochemical electrodes. Thereafter, we address the micro fabrication process of the chip and check the performance of the completed chips. The tests show that the self-made micro-fluidic chips had been successfully in separation of dopamine and catechol in an effective manner by contrast with traditional capillary electrophoresis. Furthermore, the ECD techniques had been well integrated with capillary electrophoresis on the micro-fluidic chip, tooen_US
dc.description.tableofcontents摘 要 I Abstract II 致 謝 III 目 錄 IV 圖 目 錄 VIII 表 目 錄 XII 第一章 緒論 1.1 前言 1 1.2 文獻回顧 3 1.2.1 毛細管電泳之發展 3 1.2.2 毛細管電泳結合電化學檢測 5 1.2.3 MEMS技術在CE-EC系統的應用 7 1.3 研究動機與目的 8 第二章 理論模式 12 2.1 問題描述 12 2.2 流場理論 12 2.2.1 電泳 12 2.2.2 電滲流 14 2.2.3 流場之統御方程式 20 2.3 物質的擴散 21 2.4 毛細電泳效能評估 22 2.4.1 分離效率 22 2.4.2 解析度 24 2.5 電化學機制 26 2.5.1 Faradic & Non-Faradic 過程 26 2.5.2 Nernst方程式 27 2.5.3 質量傳遞控制的反應 29 2.5.4 電子傳遞控制的反應 31 第三章 數值模擬 37 3.1 FEMLAB簡介 37 3.2 參數及邊界條件設定 37 3.2.1 電場邊界條件 38 3.2.2 流場邊界條件 39 3.2.3 物質擴散之邊界條件 40 3.3 網格測試 40 3.4 檢體樣本的擷取及傳送 42 3.5 電化學電極的外型 43 3.6 檢測儲存槽的電位分佈 44 3.6.1 工作電極的位置 45 3.6.2 工作電極-參考電極間距 46 第四章 實驗架構與方法 48 4.1 實驗架構 48 4.2 電極的製作 49 4.3 微流體晶片製程 50 4.4 緩衝液與檢體樣本 51 4.5 電化學檢測技術 52 4.5.1 Hydrodynamic voltammetry 52 4.5.2 伏安循環法 52 4.5.3 安培法 53 4.6 實驗方法 53 4.6.1 流道清潔與檢體樣本的操控 54 4.6.2 電化學偵測電位測試 54 4.6.3 分離效能與偵測訊號的探討 55 第五章 晶片測試結果 56 5.1 偵測電位的決定 56 5.2 晶片效能分析 56 5.2.1 電化學訊號分析 56 5.2.2 分離效能測試結果 58 第六章 結論與建議 59 6.1 實驗結果討論 59 6.2 未來展望與建議 61 參考文獻 64 圖1-1 電泳作用示意圖 69 圖1-2 傳統毛細電泳配置 69 圖1-3 電滲流與層流速度分佈 70 圖2-1 SiOH水解使表面帶負電 70 圖 2-2 Helmholtz 電雙層模型 71 圖2-3 Gouy-Chapman 電雙層模型 71 圖2-4 Stern修正的電雙層模型 72 圖2-5 流場中的電動力 72 圖2-6 旋轉電極兩個不同轉速對應的濃度曲線 73 圖2-7 氧化與還原反應的反應活化能 73 圖2-8 氧化還原反應總電流示意圖 74 圖2-9 施加電位改變反應活化能的大小 74 圖3-1 FEMLAB的模式瀏覽器介面 75 圖3-2 Navier-Stokes equation 75 圖3-3 conductive media DC 76 圖3-4 convection and diffusion 76 圖3-5 FEMLAB工作介面 77 圖3-6 二維十字形流道示意圖 77 圖3-7 一次-二次加密的網格與模擬結果 78 圖3-8 一次與二次加密濃度分佈曲線 78 圖3-9二次-三次加密的網格與模擬結果 79 圖3-10 二次與三次濃度分佈曲線 79 圖3-11 濃度在軸向隨著移動距離擴散 80 圖3-12 樣本的進樣-擷取-分離示意圖 80 圖3-13 預集中與未集中進樣示意圖 81 圖3-14 十字流道各邊界電極代號 81 圖3-15 未集中進樣與集中進樣 82 圖3-16-1 未集中擷取 83 圖3-16-2 集中擷取 84 圖3-17 預集中與未集中濃度分佈 85 圖3-18 濃度在矩型儲存槽擴散情形 86 圖3-19 濃度在圓型儲存槽擴散情形 87 圖3-20 圓弧形與長條狀電化學電極組 88 圖3-21 200V分離電壓-儲存槽內部電位分佈 88 圖3-22 100V、300V、400V分離電壓-儲存槽內部電位分佈 89 圖3-23 儲存槽出口與1mm處濃度比較 89 圖3-24 儲存槽出口與1mm處速度比較 90 圖4-1 實驗架構圖 90 圖4-2 製作完成的網版 91 圖4-3 印刷完成的碳電極 91 圖4-4 光罩設計 92 圖4-5 JSR流道結構表面2D量測圖 92 圖4-6成品晶片 93 圖4-7 晶片製作流程圖 93 圖4-8 cyclic voltammetry電位掃瞄示意圖 94 圖4-9 cyclic voltammogram示意圖 94 圖4-10集中進樣模式的電極極性設定 95 圖4-11擷取模式的電極極性設定 95 圖4-12實驗設備 96 圖5-1 hydrodynamic voltammogram 96 圖5-2 檢體移動速度與驅動電壓之關係 97 圖5-3 dopamine濃度與偵測訊號關係 97 圖5-4 catechol濃度與偵測訊號關係 98 圖5-5 緩衝液與檢體樣本的cyclic voltammogram 99 圖5-6 檢體樣本在不同電壓下的分離情形 100 圖6-1 檢體之遷移率與外加電壓之關係 101 圖6-2 伏安循環時偵測訊號不穩定的狀況 101 圖6-3 流道寬度與檢測儲存槽內部電位降的關係 102 表1-1 常見的檢體分離技術 103 表1-2 搭配毛細電泳的檢測技術 104 表3-3 數值模擬中流體的物理性質 105zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807200615121000en_US
dc.subjectelectrophoresisen_US
dc.subject電泳zh_TW
dc.subjectelectrochemical detectionen_US
dc.subjectFEMLABen_US
dc.subject電化學zh_TW
dc.subject檢測zh_TW
dc.subjectFEMLABzh_TW
dc.title網版印刷電泳-電化學晶片測試zh_TW
dc.titleElectrochemical Detection Using Screen-Printed Electrodes in Microchipen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.