Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1630
標題: 應用鋯鈦酸鉛薄膜感測器觀察A549肺癌細胞受熱因子抑制之生長情況
A study of using PZT membrane sensor to observe the growth of human lung cancer cell A549 inhibited by thermal effect
作者: 吳家榮
Wu, Chia-Jung
關鍵字: PZT;PZT;mass sensor;lung cancer A549;質量感測器;A549肺癌細胞
出版社: 機械工程學系所
引用: 參考文獻 1. Myriam Passamano , Monica Pighini, ”QCM DNA-sensor for GMOs detection,” Sensors and Actuators B 118 , pp.177-181, 2006. 2. Jeong Hoon Lee , Ki Hyun Yoon , Kyo Seon Hwang , Jaebum Park , Saeyoung Ahn, Tae Song Kim, “Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein,“ Biosensors and Bioelectronics 20 ,pp.269-275,2004. 3. J. Mertens, M. Álvarez, and J. Tamayo,“Real-time profile of microcantilevers for sensing applications,” APPLIED PHYSICS LETTERS 87, 234102 ,2005. 4. Mar Alvarez, Javier Tamayo, “Optical sequential readout of microcantilever arrays for biological detection,” Sensors and Actuators B 106 , pp.687-690,2005. 5. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Gu¬ntherodt, Ch. Gerber, J. K. Gimzewski,” Translating Biomolecular Recognition into Nanomechanics,” Science 288, 316,2000. 6. Fareid Asphahani, Myo Thein, Omid Veiseh, Dennis Edmondson, Ryan Kosai, Mandana Veiseh, Jian Xu, Miqin Zhang,” Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors,” Biosens Bioelectron, 23(8): 1307-1313, 2008. 7. Masayasu Suzuki, Yuichi Nakashima, Yusuke Mori, “SPR immunosensor integrated two miniature enzyme sensors,” Sensors and Actuators B 54, pp.176-181, 1999. 8. Robert B. Towery, Newton C. Fawcett, Jeffrey A. Evans, “Determination of Chloroplast DNA in a Cultured Soybean Line Using a QCM Biosensor,” IEEE Sensors Journal, vol.4, No. 4, August ,2004. 9. Xiaodi Su , Fook Tim Chew , Sam F.Y. Li ,” Piezoelectric quartz crystal based label-free analysis for allergy disease, ” Biosensors & Bioelectronics 15 , pp.629-639,2000. 10. Jeong Woo Yi, Wan Y. Shih, Wei-Heng Shih,” Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers,” Jouanal of Applied Physics Volume 91, Number 3 ,2002. 11. Harsh Sharma, R S. Lakshmanan, B N.Johnson, Raj. Mutharasan, “Piezoelectric cantilever sensors with asymmetric anchor exhibit picogram sensitivity in liquids,” Sensors and Actuators B , 2010. 12. Dong Won Chun, Kyo Seon Hwang, Kilho Eom, Jeong Hoon Lee, Byung Hak Cha ,Woo Young Lee, Dae Sung Yoon, Tae Song Kim,” Detection of the Au thin-layer in the Hz per pictogram regime based on the microcantilevers ,“Sensors and Actuators A 135 , pp.857-862,2007. 13. Jeong Hoon Lee, Kyo Seon Hwang, Jaebum Park, Ki Hyun Yoon, Dae Sung Yoon, Tae Song Kim, “Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever ,” Biosensors and Bioelectronics 20 , pp.2157-2162 ,2005. 14. Ghi Yuun Kang, Ga Young Han, Ji Yoon Kang, Il-Hoon Cho, Hyung-Ho Park, Se-Hwan Paek, Tae Song Kim, “Label-free protein assay with site-directly immobilized antibody using self-actuating PZT cantilever ,” Sensors and Actuators B 117 , pp.332-338 ,2006. 15. Byung Hak Cha, Sang-Myung Lee, Jae Chan Park, Kyo Seon Hwang, Sang Kyung Kim, Yoon-Sik Lee, Byeong-Kwon Jud, Tae Song Kim,” Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor,” Biosensors and Bioelectronics 25, pp.130-135, 2009. 16. Yeolho Lee, Sangkyu Lee, Hyejung Seo, Sangmin Jeon, and Wonkyu Moon,” Label-Free Detection of a Biomarker with Piezoelectric Micro Cantilever Based on Mass Micro Balancing ,” JALA 259-264 ,2008. 17. B. Ilic, D. Czaplewski, and H. G. Craighead,” Mechanical resonant immunospecific biological detector ,” Appl. Phys. Lett., Vol. 77, No. 3 ,2000. 18. Ting Xu, Zhihong Wang, Jianmin Miao, Ling Yu, Chang Ming Li, “Micro-machined piezoelectric membrane-based immunosensor array,” 2008, Biosensors and Bioelectronics 24 , pp.638-643,2008. 19. Ting Xu, JianminMiao, ZhihongWang, LingYu, ChangMingLi, “Micro-piezoelectric immune assay chip for simultaneous detection of Hepatitis Bvirusand α-fetoprotein,” Sensors and Actuators B ,2010. 20. Kyo Seon Hwang, Jeong Hoon Lee, Jaebum Park, Dae Sung Yoon, Jung Ho Park, Tae Song Kim,” In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever,” Lab Chip , 4 , pp.547-552 ,2004. 21. Kai Zhang, Li-Bo Zhao, Shi-Shang Guo, Bao-Xian Shi, Tin-Lun Lam, Yun-Chung Leung,Yong Chen, Xing-Zhong Zhao, Helen L.W. Chan, Yu Wang,”A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells,” Biosensors and Bioelectronics 26 , pp.935-939 ,2010. 22. 梁峰賓, 「小蘗鹼對肺癌細胞生長抑制之研究」,碩士論文,中國醫藥學院中國醫學研究所,台中,2003。 23. 池宇傑,「芹菜素對人類肺癌細胞株A549 及肺癌細胞株H460 生長抑制的分子作用機轉研究」,碩士論文,中國醫藥大學生物科技研究所,台中,2008。 24. Folasade Ogunlesi, Cecilia Cho, Sharon A. McGrath-Morrow,” The effect of glutamine on A549 cells exposed to moderate hyperoxia,“ Biochimicate Biophysica Acta 1688, pp.112-120 ,2004. 25. 李靜雯,「奈米結構與微水平振動平台對細胞生長之影響研究」,碩士論文,國立中興大學生醫工程學研究所,台中,2009。 26. Wilander L,Rundquist I,Oberg P A and Odman S,”Laser He/Ne light exposure of red blood cells,”Medical & Biological Engineering & Computing, vol.24,pp.558-560 ,1986. 27. D. Isarakorn, D.Briand, A.Sambri, S.Gariglio, J.-M.Triscone, F.Guy, J.W.Reiner, C.H. Ahn, N.F.deRooij,” Finite element analysis and experiments on a silicon membrane actuated by an epitaxial PZT thin film for localized-mass sensing applications,” Sensors and Actuators B SNB-12642, ,2010. 28. 周卓明,壓電力學,全華科技圖書股份有限公司。 29. 侯孟助,「新蕪菁色嵌紋病毒感測器之可行性分析」,碩士論文,國立中興大學機械工程研究所,台中,2008。 30. 張志綱,「微小質量量測之自我激發鋯鈦酸鉛薄板感測器」,碩士論文,國立中興大學機械工程研究所,台中,2009。 31. M. Yu, B. Balachandran,” Sensor Diaphragm Under Initial Tension: Linear Analysis,” Society for Experimental Mechanics, Vol 45, No. 2,pp.123-129 ,2005. 32. M Olfatnia, T Xu, L S Ong, J M Miao, Z H Wang,” Investigation of residual stress and its effects on the vibrational characteristics of piezoelectric-based multilayered microdiaphragms,” J. Micromech. Microeng. 20 , 2010. 33. Werner. Soedel,” Vibrations of Shells and Plates,” Marcel Dekker, Inc.,2005. 34. Cheng-Chun Lee, Qing Guo, G.Z. Cao, I.Y. Shen,” Effect of electrode size and silicon residue on piezoelectric thin-film membrane actuators,” Sensors and Actuators A 147, pp. 279-285 ,2008. 35. Cheng-Chun Lee, G.Z. Cao, I.Y. Shen,” Effects of residual stresses on lead–zirconate–titanate (PZT) thin-film membrane microactuators ,”Sensors and Actuators A 159, pp. 88-95 ,2010. 36. 莊峻佑,「鋯鈦酸鉛薄膜製程參數對機電性質之影響」,碩士論文,國立中興大學機械工程研究所,台中,2010。 37. Arkady A. Karyakin, Galina V. Presnova, Maya Yu. Rubtsova, Alexey M. Egorov, “Oriented Immobilization of Antibodies onto the Gold Surfaces via Their Native Thiol Groups”, Analytical Chemistry, Vol. 72, No. 16 ,2000. 38. E. Defay , C. Millon , C. Malhaire, D. Barbier , “PZT thin films integration for the realisation of a high sensitivity pressure microsensor based on a vibrating membrane,” Sensors and Actuators A 99 , pp.64-67 ,2002. 39. W. C. Dewey , D. E. Thrall, E. L. Gillette, "Hyperthermia and radiation—Selective thermal effect on chronically hypoxic tumor-cells in vivo", Int. J. Radiat. Oncol. Biol. Phys., vol. 2, 1977.
摘要: 
本研究發展以圓型鋯鈦酸鉛薄膜式(PZT)之壓電材料製作出質量感測器。當微小質量貼附於感測器表面時,藉由共振頻率漂移的情況推算出貼附上之質量的大小。圓型薄膜式壓電感測器是由矽薄膜,PZT薄膜與一對電極所組成之,利用阻抗分析儀量測其訊號。在結構設計上,固定PZT薄膜之厚度為1μm與矽薄膜之半徑1000μm,以矽薄膜之厚度與電極面積作為設計參數。本研究利用有限元素軟體ANSYS計算感測器的性能。由模擬結果可知,矽薄膜之厚度會影響到感測器之初始頻率,再利用有限元素軟體設計結構之上電極的大小,電極之設計將影響到感測器的輸出,不可超過結構第一模態之反曲點。得最佳值約為結構半徑的60%。
接著將本裝置運用於生物感測上,本研究以A549肺腺癌細胞做為探討,以控制培養箱之環境溫度做為腫瘤細胞生長機制的抑制,當培養溫度高於正常培育溫度3~6℃時,腫瘤細胞會因而開始凋亡,以本研究之質量感測器量測細胞的變化量並以結構頻率飄移量作為依據,當培養相同的細胞濃度(cells/ml)於37℃與培養於43℃的情況下,結果發現培養於37℃的細胞變化,其頻率飄移約338Hz,而培養於43℃的細胞變化其頻率飄移約98Hz,可發現細胞在高於正常培養溫度3~6℃會有凋亡的現象產生,並成功的以本裝置量測出其變化。

In this study, we used a piezoelectric membrane actuated by a PZT thin film for mass-sensing applications. The form of the mass sensor was made circular, in order to increase signal performance with well to the square form. In this device, we can calculate the mass added on a sensing surface by the resonance frequency shift when micro-masses were coated on the sensing surface. This sensor consists of silicon thin film, PZT thin film and a couple electrodes, and measures the signal by impedance (4924A).
A finite element model is used to simulate the performance of sensor. By the result of simulation, the radius and thickness of silicon diaphragm will change the first resonant frequency of sensor. The thickness of PZT thin film and the size of top electrodes will affect the signal to noise ratio of sensor. In this thesis, 1μm PZT thin film and 80μm silicon diaphragm were used, because of the limitation of fabrication process. Radius of silicon diaphragm were chosen by 800μm and 1000μm to obtain first resonant frequency of sensor, 435 kHz and 275 kHz, respectively. The area of top electrode should be 60% of the area of silicon diaphragm to gain the maximum signal to noise ratio.
Piezoelectric sensors based on resonance frequency shift were then used to detect the mass at which the lung cancer cell A549 coats on the sensing surface. A549 cells were dip coated on the back side of silicon diaphragm, cultured in the incubator at 24 hours. After incubation, sensors were measured by impedance analyzer (Agielent 4294A) to get frequency shift and calculate the added mass on the silicon diaphragm. In this thesis, inhibition of A549 by temperature was also studied. A549 cells began apoptosis when culture temperature was higher than 37℃. The same concentration of A549 cells were incubated both at 37℃ and 43℃. After cultured for 24 hours at 37℃, A549 cells grew flourishing, and sensors detected frequency shift of 338 Hz. At 43℃, A549 cells almost perished, and sensors just observed frequency shift of 98 Hz.
URI: http://hdl.handle.net/11455/1630
其他識別: U0005-2208201115223600
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.