Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16311
標題: 實尺寸輕質粒料混凝土梁構件之力學行為
Research on the Mechanical Behaviors of Full Scale Lightweight Aggregate Concrete Beam
作者: 吳崇豪
Wu, Chung-Hao
關鍵字: lightweight aggregate concrete;輕質粒料混凝土;beam;flexural;shear;size effect;梁;撓曲行為;剪力行為;尺寸效應
出版社: 土木工程學系所
引用: 1. 顏聰,「輕質粒料混凝土」,中華輕質粒料協會,2005年,第91-101頁。 2. 顏聰,「水庫淤泥之資源化應用-輕質粒料之燒製與量產」,水庫淤泥輕質粒料混凝土產製及規範研討會論文集,第3-16頁,台中,2003年。 3. 陳豪吉,「以台灣地區生產之輕質粒料探討輕質混凝土之配比、製作及強度性質」,博士論文,中興大學土木工程系,1998年。 4. 高健章、張阿本,「頁岩燒製輕質粒料之工程性質研究」,營建知訊,1992年。 5. 陳豪吉、黃中和、湯兆緯,「鋼筋輕質混凝土之耐震特性評估」,興大工程學刊,第十五卷,第二期,2004年。 6. 黃中和,「輕質粒料混凝土梁耐震行為之研究」,博士論文,國立中興大學土木工程研究所,2005年。 7. 方一匡,「水庫淤泥輕質粒料混凝土梁構件之力學行為研究」,水庫淤泥輕質粒料混凝土產製及應用研討會論文集,第145-165頁,2003年。 8. 許協隆、曲天強,「鋼筋輕質混凝土梁構件之剪力與撓曲行為」,第二屆輕質骨材混凝土研討會暨國科會產學合作成果發表會論文集,第193-206頁,台中,2005年。 9. Fédération internationale de la précontrainte (FIP), “FIP Manual of Lightweight Aggregate Concrete,” 2nd edition, Published by Surry University Press, 1983. 10. American Concrete Institute, “Guide for Structural Lightweight Aggregate Concrete,” Report by ACI Committee 213,ACI213R-87, in Manual of Concrete Practice, 1987. 11. The American Society for Testing and Materials (ASTM), “Standard Specification for Lightweight Aggregates for Structural Concrete,” ASTM Committee C-9, Designation C330-89, Annual Book of ASTM Standards Vol.04 Philadelphia, pp.193-195. 12. 陳豪吉,「以水庫淤泥製造輕質粒料及輕質混凝土之研究」,國科會報告,2000年。 13. 顏聰、黃兆龍、高健章等,「水庫淤泥輕質粒料產製及輕質粒料混凝土應用與推廣」,內政部建築研究所計畫期末報告,2003年。 15. 內政部建築研究所等,「輕質骨材及輕質骨材混凝土應用研討會」,論文集,2003年。 16. A. Short and W. Kinniburgh, “Lightweight Concrete,” Formerly Building Research Establishment, Garston, Watford, U.K. 1976. 16. H. J. Chen, T. Yen, T. P. Lai, and Y. L. Huang, “Determination of the Dividing Strength and Its Relation to the Concrete Strength in Lightweight Aggregate,” Cement & Concrete Composites, Vol. 21, pp. 29-37, 1999. 17. 顏聰,「輕質粒料混凝土之力學性質」,高性能混凝土於結構工程之應用研討會論文集,第1-21頁,台中,2003年。 18. H. J. Chen, T. Yen, and K. H. Chen, “Evaluating Elastic Modulus of Lightweight Aggregate”, ACI Materials Journal, Vol. 100, Issue 2, pp. 108-113, 2003. 19. 羅國豪,「輕質骨材混凝土預鑄版之試驗與研究」,碩士論文,國立台灣科技大學營建工程研究所,2004年。 20. C. H. Lin and F. S. Lee, “Ductility of High-Performance Concrete Beam with High strength Lateral Reinforcement,” ACI Structural Journal, Vol. 98, Issue 4, pp. 1-9, 2001. 21. M. Pecce and G. Fabbrocion, “Plastic Rotation Capacity of Beam in Normal and High-Performance Concrete,” ACI Structural Journal, pp. 290-296, 1999. 22. I. K. Fang, S. T. Yen, C. S. Wang and K. L. Hong, “Cyclic Behavior of Moderately Deep HSC Beams,” ACI Structural Journal, Vol. 119, pp. 2573-2592, 1993. 23. 陳展裕,「高性能混凝土梁之動態撓曲行為」,碩士論文,國立中興大學土木工程研究所,2002年。 24. T. C. Zsutty, “Shear Strength Prediction for Separate Categories of Simple Beam Test,” ACI Journal, Proceedings Vol. 68, Issue 2, pp. 138-143, 1971. 25. K. S. Rebeiz, “Shear Strength Prediction for Concrete Members,” Journal of Structural Engineering, Vol. 125, Issue 3, pp. 301-308, 1999. 26. P. D. Zarais and G. C. Papadakis, “Diagonal Shear Failure and Size Effect in RC Beams without Web Reinforcement,” Journal of Structural Engineering, Vol. 127, Issue 7, pp. 733-742, 2001. 27. G. Russo, G. Somma and D. Mitri, “Shear Strength Analysis and Prediction for Reinforced Concrete Beams without Shear Stirrups,” Journal of Structural Engineering, Vol. 131, Issue 1, pp. 66-74, 2005. 28. S. H. Cho, “Shear Strength Prediction by Modified Plasticity Theory for Short Beams,” ACI Structural Journal, Vol. 100, No. 1, pp. 105-112, 2003. 29. P. D. Zararis, “Shear Strength and Minimum Shear Reinforcement of reinforced concrete slender beams,” ACI Structural Journal, Vol. 100, Issue 2, pp. 203-214, 2003. 30. E. C. Bentz, “Empirical Modeling of Reinforced Concrete Shear Strength Size Effect for Members without Stirrups,” ACI Structural Journal, Vol. 102, Issue 2, pp. 232-241, 2005. 31. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (318R-05),” American Concrete Institute, Farmington Hills, Mich., 2005. 32. W. Ritter, “Die Bauweise Hennebique,” Schweizerische Bauzeitung, Vol. 33, Issue 7, pp. 59-61, 1899. 33. E. Mörsch, “Concrete Steel Construction,” Translation of the 3rd German Edition by E. P. Goodrich, McGraw-Hill Book Co., New York, 1909 34. A. P. Clark, “Diagonal Tension in Reinforced Concrete Beams,” ACI Journal, Vol. 48, Issue 10, pp. 145-15, 1951. 35. B. Bresler and J. G. MacGregor, “Review of Concrete Beams Failing in Shear,” Journal of Structural Division, ASCE, 93, ST1, pp. 343-372, 1967. 36. Joint ACI-ASCE Committee 426, “The Shear Strength of Reinforced Concrete Members,” Journal of Structural Division, ASCE, V99, No. ST6, pp.1091-1187, 1973. 37. R. Park and T. Paulay, “Reinforced Concrete Structures,” John wily & Sons, 1975. 38. G. N. J. Kani, “Riddle of Shear Failure and Its Solution,” ACI Journal, Proceedings Vol.63, Issue 6, pp. 675-692, 1966. 39. S. H. Ahmad, A. R. Khaloo and A. Poveda, “Shear Capacity of Reinforced High-Strength Concrete Beams,” ACI Journal, Proceedings Vol.83, Issue 2, pp. 297-305, 1986. 40. S. H. Ahmad and D. M. Lue, “Flexure-Shear Interaction of Reinforced High-Strength concrete Beams,” ACI Structure Journal, Vol.84, Issue 4, pp. 330-341, 1987. 41. H. P. J. Taylor, “Shear Strength of large Beams,” Journal of The Structure Division, ASCE, Vol.98, Issue 4, pp. 2473-2490, 1972. 42. A. M. Neville, “A General Relation for Strength of Concrete Specimens of Different Shapes and Size,” ACI Structure Journal, Vol.60, Issue 10, pp. 1095-1109, 1966. 43. G. A. Arroyo and N. A. Holland, “Flexure-Shear Interaction of Reinforced High-Strength Concrete Beams,” ACI Structural Journal, Vol. 85, No. 3, pp. 354-358, 1988. 44. A. A. Akhtaruzzaman and A. Hasnat, “Shear and Flexural Behavior of Brick-Aggregate Concrete Beams without Web Reinforcement,” Journal Proceedings, Vol. 83, Issue 2, pp. 284-289, 1986. 45. S. U. Pillai and D. W. Kirk, “Reinforced Concrete Design,” Second Edition, 2003. 46. K. S. Rebeiz, “Shear strength prediction for concrete members,” ACI Structural Journal, Vol. 125, Issue 3, pp. 301-308, 1999. 47. Zsutty T. C., “Beam Shear Strength Prediction by Analysis of Existing Data,” ACI Journal, Proceedings V.65, Issue 11, pp. 943-951, 1986. 48. 中國土木水利工程學會,「混凝土工程設計規範與解說」,科技圖書,第3-7頁,台北,1997年。 49. M. P. CoIlins and D. Kuchma, “How Safe Are Our Large, Lightly Reinforced Concrete Beams, Slabs und Footings?” ACI Structural Journal, Vol. 96, Issue 4, pp. 482-490, 1999. 50. M. P. Collins and D. Mitchell, “Prestressed Concrete Structures,” Prentice Hall, Englewood Cliffs, New Jersey, pp. 766, 1991. 51. R. C. Elstner and E. Hognestad, “Laboratory Investigation of Rigid Frame Failure,” AC1 Journal, Vol. 53, Issue 1, pp. 637-668, 1957. 52. G. N. J. Kani, “Basic Facts Concerning Shear Failure,” AC1 Journal, Vol. 63, Issue 6, pp. 675-692, 1966. 53. G. N. J. Kani, “How Safe are our Large Reinforced Concrete Beams?” AC1 Journal, Vol. 64, Issue 3, pp. 128-141, 1967. 54. Z. P. Bazant and J. K. Kim, “Size Effect in Shear Failure of Longitudinally Reinforced Beams,” ACI Journal, Proceedings V.81, Issue 5, pp. 456-468, 1984. 55. Z. P. Bazant and H. H. Sun, “Size Effect in Diagonal Shear Failure: Influence of Aggregate Size and Stirrups,” AC1 Materials Journal, Vol. 84, Issue 4, pp. 259-272, 1987. 56. Z. P. Bazant and M. T. Kazemi, “Size Effect on Diagonal Shear Failure of Beams without Stirrups,” AC1 Structural Journal, Vol. 88, Issue 3, pp. 268-276, 1991. 57. J. K. Kim and Y. D. Park, “Shear Strength of Reinforced High Strength Concrete Beams without Web Reinforcement,” Magazine of Concrete Research, Vol. 46, Issue 166, pp. 7-16, 1994. 58. T. Shioya, “Shear Properties of Large Reinforced Concrete Members,” Special Report of Institute of Technology, Shimizu Corporation, No. 25, 1989. 59. S. P. Shah, S. E. Swartz and C. Ouyang, “Fracture Mechanics of Concrete,” John Wiley & Sons, Inc., New York, pp .552, 1995. 60. A. Carpinteri, “Applications of Fracture Mechanics to Reinforced Concrete,” Elsevier Science Publishers Ltd., England, 1992. 61. P. J. Gustafsson and A. Hillerborg, “Sensitivity in Shear Strength of Longitudinally Reinforced Concrete Beams Energy of Concrete,” ACI Structural Journal, Vol. 85, Issue 3, pp. 286-294, 1988. 62. A. Hillerborga, M. Modéera and P. E. Peterssona, “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cement Concrete Research, Vol. 6, Issue 6, pp. 773-782, 1976. 63. Z. P. Bazant and B. H. Oh, “Crack Band Theory for Fracture of Concrete,” Materials and Structures, RILEM, Vol. 16, pp. 155-177, 1983. 64. Y. S. Jenq, and S. P. Shah, “Two Parameter Fracture Model for Concrete,” Journal of Engineering Mechanics, ASCE, Vol. 111, Issue 10, pp. 1227-1241, 1985. 65. Z. P. Bazant, “Size Effect in Blunt Fracture: Concrete, Rock, Metal,” Journal of Engineering Mechanics, Vol. 110, Issue 4, pp. 518-535, 1984. 66. Z. P. Bazant, M. T. Kazemi, T. Hasegawa and J. Mazars, “Size Effect in Brazilian Split-Cylinder Tests: Measurements and Fracture Analysis.” ACI Material Jornal, Vol. 88, Issue 3, pp. 325-332, 1991. 67. Z. P. Bazant, S. Sener and P.C. Prat, “Size Effect tests of Torsional Failure of Plain and Reinforced Concrete Beams,” Materials and Structures, RILEM, Vol. 21, Issue 6, pp. 425-430, 1988. 68. B. Barr and Z. Y. Tokatly, “Applications of Fracture Mechanics to Reinforced Concrete,” edited by A. Carpinteri, Chapter 4, Elsevier Science Publishers Ltd., England, 1992. 69. C. Bosco, A. Carpinteri and P. G. Debernardi, “Minimum Reinforcement in High-Strength Concrete,” Journal of Structural Engineering, Vol. 116, Issue 2, pp. 427-437, 1990. 70. 內政部營建署編輯委員會,「結構混凝土設計規範」,第2版,台北:營建雜誌社,第3.1.6節,2003年。
摘要: 
The research works in Taiwan up to date mostly focus on the laboratory specimen size. It seems valid and necessary to engage on more studies of full size specimen tests, which will lead directly to the design work in practice. It is felt that more information about the flexural and shearing behaviors of reinforced lightweight aggregate concrete (LWAC) beams should be understood. For this reason, the study presents an experimental investigation on flexural behavior, shear behavior and size effect of full scale reinforced lightweight aggregate concrete beams made with lightweight aggregate that manufactured from fine reservoir sediments.
The design strength of concrete is fc’ = 34 MPa. For flexural test, third-point loading test was performed and the beam dimension is 250 mm × 400 mm with three reinforcement ratios of 0.32 %、0.97 % and 1.29 %. For shearing test, center-point loading test was adopted for beams with same cross section as the flexural test specimen, but various span-to-depth ratios (a/d = 1.5, 2.5 and 3.5). For size effect test, three-point loading test was performed for identical beams with three different scales in dimension. The beams are all designed with minimum reinforcement according to ACI and the a/d = 3.0.
The results of flexural test showed that LWAC beams have similar load capacities and failure types as those of normal weight concrete (NC) beams. However, LWAC beams seem to present larger curvature and ductility. The current elastic flexural theory adopted by ACI 318 Code for predicting the deflection of LWAC beam is on the average 10 % smaller than the measured deflection.
The shear test results showed that the shear failure modes of LWAC beams are similar to those of NC beams, including shear-compression failure and shear-tension failure. The shear failure surface of LWAC beams are smoother than those of NC beams, resulting in a brittle failure. Moreover, the shear strength of LWAC beams, similar to those NC beams, increase with the increase of a/d ratios; in which, the ultimate shear strengths of LWAC beams are smaller than those of NC beams. The ACI code provision with respect to the ultimate shear strength of LWAC beam appears to be conservative, particularly for beams with a/d ratio in the range of 1.5 to 2.5. In addition, Vu,t/Vu,Z ratios computed based on the Zsutty’s equation seems to be more reasonable than those computed using the ACI equation or the Rebeiz’s equation. Hence, the Zsutty’s equation is appropriate for the shear strength prediction of LWAC beams.
From the size effect analysis, it was found that the deflection ductility (μΔ) in terms of the ratio of ultimate deflection (Δu) to yielding deflection (Δy) decreases with the increase of the size of the specimen. In which, the reduction rate of μΔ with respect to the effective depth of LWAC beams is obviously larger than that of NC beams. In addition, the ultimate deflection-to-depth (Δu/s) of both concrete beams increases with the decrease of beam sizes; whereas, the declination of the Δu/s ratio of LWAC beam is more significant than that of the NC beams. This indicates that the LWAC beam behaves stronger size effective.

本文以水庫淤泥燒製之輕質粒料,製作實尺寸鋼筋輕質粒料混凝土梁與常重混凝土梁,探討其撓曲行為、剪力行為及尺寸效應。試驗使用之輕質粒料混凝土與常重混凝土,其設計強度 (fc’) 均取為34 MPa。撓曲試驗之梁斷面尺寸為250 mm × 400 mm,考慮三種不同鋼筋比 (ρ = 0.32 %、0.97 %及1.29 %);梁之加載採用三分點載重試驗法。剪力試驗部分,梁試體之斷面尺寸與撓曲試驗者相同,選用三種不同剪跨與有效深度比,a/d = 1.5、2.5及3.5;載重試驗則以中央點載重方式進行。另外,在尺寸效應部分,製作三種不同尺寸,但幾何形狀相似的鋼筋混凝土梁構件,則以三點載重方式進行試驗,其剪跨與有效深度比取a/d = 3.0。
撓曲試驗結果顯示,混凝土強度相同的輕質混凝土梁,其降伏載重和極限載重與常重混凝土梁者相近,但前者的極限撓度和曲率延展性都大於後者。以ACI規範建議的彈性撓曲理論,推求輕質混凝土梁的撓度時,得知梁的降伏撓度計算值與實驗值接近,表示ACI法適合應用於輕質混凝土梁的撓曲行為預測。輕質混凝土梁的剪力破壞模式,與常重混凝土梁者相似,包括剪壓破壞及剪拉破壞兩種。輕質混凝土梁的剪力破壞面光滑,屬於脆性破壞,其剪力強度與常重混凝土梁一樣,也隨a/d的減小而增大,但都小於常重混凝土梁者。對於輕質混凝土梁的極限剪力強度預測,ACI規範建議式的預測值較為保守;Zsutty式的預測值則只略大於實驗值,可評估為最適宜的預測式。另外,從尺寸效應試驗結果發現,輕質混凝土梁的撓度延展性 (μΔ = Δu/Δy),隨尺寸的增大而減小,即較大之梁其韌性較差。而輕質混凝土梁的μΔ隨尺寸 (d) 之減低率,明顯大於常重混凝土梁者,表示輕質混凝土梁的尺寸效應較為明顯。輕質和常重混凝土梁的撓度跨距比 (Δu/S) 都隨梁尺寸的增大而減小,但輕質混凝土梁Δu/S的衰減會比常重混凝土梁者顯著。
URI: http://hdl.handle.net/11455/16311
其他識別: U0005-2508201010173800
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.