Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1635
標題: 多模式液晶繞射光學元件之研究
Study of Multi-Mode Liquid Crystal Diffractive Optical Element
作者: 李柏緯
Li, Bo-Wei
關鍵字: 光柵;grating;液晶;高分子摻雜;高分子穩固型液晶;繞射光學元件;三光束光柵;差分推挽法;光學讀寫頭;liquid crystal;polymer dispersion;polymer stabilized liquid crystal;diffractive optical element;3-beam grating;differential push-pull;optical pickup head
出版社: 機械工程學系所
引用: [1] 金國藩 等著, “二次光學”, 國防工業出版社(1998) [2] 林來誠, “塑膠繞射光柵的製作與應用”, 光連雙月刊 第9期(1997) [3] T. J. Suleski, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507-7518(1995) [4] M. T. Gale, et al. ”Continuous-relief diffractive optical elements for two-dimensional array generation,” Appl. Opt. 32, 2725-2533(1993) [5] J. Borel, et al. United States Patent: No. 3843231 [6] H. Sakata , et al. “Switchable zero-order diffraction filters using fine-pitch phase gratings filled with liquid crystals, ” Jpn. J. Appl. Phys. 39, 1516–1521(2000) [7] J. H. Park, et al. “Concept of a liquid-crystal polarization beamsplitter based on binary phase grating,” Appl. Opt. 83(10), 1981-1983(1918) [8] M. Honma, et al. “Liquid-crystal Fresnel zone plate fabricated by microrubbing,” Jpn. J. Appl. Phys. 44(1), 287–290(2005) [9] Y. Hori, et al. “Field-controllable liquid crystal phase grating,” IEEE Trans. Electron Dev. ED-26, 1734–1737(1979). [10] Z. He, et al. “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35 , 3529-3530(1996) [11] I. Fujieda, “Liquid-crystal phase grating based on in-plane switching,” Appl. Opt. 40(34), 6252-6252(2001) [12] J. A. Kosmopoulos, et al. “Geometrical optics approach to the nematic liquid crystal grating: numerical results,” Appl. Opt. 26(9), 3516-3519(1987) [13] D. K. Yang, et al. “Cholesteric liquid crystal/polymer dispersion for Haze-free light shutters,” Appl. Phys. Lett. 60(254), 3102-3104(1922) [14] H. Ren, et al. “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82, 3168-3170(2003) [15] R. Hongwen, et al. “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515-1517(2003) [16] R. Hongwen, et al. “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22-24(2003) [17] X. Tong, et al. “Dual-mode switching of diffraction gratings based on Azobenzene polymer-stabilized liquid crystals,” Advanced Materials 17, 370-374(2005) [18] W. S. Rockward, et al. “Crossed phase gratins with diffractive optical elements,” Appl. Opt. 37(1998) [19] 徐瑞頤, “光盤式儲存系統設計原理”, 國防工業出版社, 1999 [20] 施錫富, “多波長光學讀寫頭技術”, 科儀新知, 第二十六卷第四期, 39-47(2005) [21] H. F. Shih, “Optical head with two wavelengths in single path using holographic optical element,” Jpn. J. Appl. Phys. 44(4), 1797-1802(2005) [22] M. Uchiyama, et al. “Development of optical pickup for digital versatile disc using two-wavelength-integrated laser diode,” Jpn. J. Appl. Phys. 39, 1549–1553(2000) [23] T. Maeda, et al. “A review of optical disk systems with blue-violet laser pickups,” Jpn. J. Appl. Phys. 42, 1044–1051(2003) [24] “光機電系統整合概論”, 國家實驗研究室儀器科技中心出版, 民國94年 [25] S. Nakamura, et al. United States Patent: No. 4525826 [26] K. Ohsato, United States Patent: No. 4775968 [27] R. Katayama, et al. “Land/Groove signal and differential push-pull signal detection for optical disks by an improved 3-beam method,” Jpn. J. Appl. Phys. 38(3), 1761-1767(1999) [28] T. Ueyama, et al. “A novel tracking servo system for multitypes of digital versatile disks using phase-shift differential push-pull method,” The Japan Society of Applied Physics 42(2), 952-953(2003) [29] E. Hecht, “Optics” Fourth Edition, Pearson Education(2002) [30] 楊祚魁, “相位式繞射光學元件之研製,” 國立台灣師範大學光電科技研究所碩士論文,民國九十三年 [31] 松本正一 等著, “液晶的基礎與應用,” 國立編譯館(1996) [32] P. Yeh, et al. “Optics of liquid crystal displays,” John Wiley & Sons(1999) [33] I. C. Khoo, “Liquid crystals: Physical properties and nonlinear optical phenomena,” John Wiley & Sons(1995) [34] D. K. Cheng, “fundamentals of engineering electromagnetics,” Prentice-Hall(1993) [35] P. J. Collings, “Liquid crystals : nature’s delicate phase of matter,” Princeton University Press(1990) [36] L. L. Kosbar, et al. “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71(17), 27-31(1997) [37] 蔡佳琪, “聚合物穩固摻雜手性分子之垂直結構液晶薄膜光電特性的研究,” 國立成功大學物理研究所碩士論文, 民國九十三年 [38] 葛聰智, “聚合物穩定膽固醇液晶結構薄膜光電特性及繞射現象之研究,” 國立成功大學物理研究所博士論文, 民國九十二年 [39] S. N. Lee, et al. “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 199-204(1998) [40] Y. G. Fuh, et al. “Studies of Polymer-Stabilized cholesteric Liquid Crystal Texture Films,” National Cheng Kung University Chinese Journal of Physics 33(3), 44-48(1995) [41] M. Ye, et al. ”Liquid crystal lens with a optical length that is variable in a wide range,” Appl. Opt. 43, 6407-641(2004)
摘要: 
本研究根據液晶具有可調變與電場操控之特性,融合高分子摻雜技術(polymer dispersion)與電極設計概念,提出單體多種繞射模式之液晶光柵。元件之提出,主要是因應當前可寫入型多波長光學寫頭(optical pickup head )系統中,需要具備多種分光能力之三光束光柵,以達成循軌偵測之目的。其多模式光柵能分別針對CD、DVD及高密度藍光碟片產生所需對應之繞射效應。
藉由純量繞射理論之模擬,我們除了探討一般傳統固定深度之相位式光柵在雙波長系統中所可能遭遇之困難外,同時以光學設計軟體輔助光柵的設計。而在實作部分我們分別提出多種雙模式與三模式之液晶光柵架構,並以單體RM257作為聚合之材料。實驗中證明在不同模式下,屏幕上之繞射圖形會有明顯之轉換,其繞射角與繞射階展開方向會根據該模式下之光柵形貌設定來呈現;除此之外,元件尚可利用電壓調整其繞射階光強,發揮液晶調變之特性。於本研究中我們成功地結合了不同形貌之光柵,達成多模式之可調變液晶光柵。

In this study, we demonstrate the liquid crystal (LC) diffraction grating with multiple modes by using the technologies of polymer dispersion and electrode pattern design. It can be applied to a multi-mode 3-beam grating which is necessary for the tracking detection purpose of a rewritable optical pickup head with multi-wavelength. Based on the specifications of CDs, DVDs and future blue light disks, the diffractive effect of each mode can be respectively designed.
With the simulations by scalar diffraction theory, the difficulties of design and production of a traditional grating with fixed depth have been discussed. The optical design software was also applied to assist the grating designs. In fabrication, we proposed several configurations of dual-mode and triplex-mode liquid crystal gratings. A mixture of LC and UV-curable monomer RM257 was also adopted as the device material. The experiments show that the diffraction patterns projected on the screen can be switched under different diffraction modes. The grating gives the diffraction angle and the expanding direction of diffraction orders in accordance with its grating mode under operation. Besides, the diffraction efficiency is tunable by adjusting the applied voltage. In this research, we successfully combine different types of grating pattern in a diffractive element and make the multi-mode LC grating possible.
URI: http://hdl.handle.net/11455/1635
其他識別: U0005-1808200615401200
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.