Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16420
標題: 光散射結合氧化鋅奈米材料於選擇性偵測 空氣中揮發性有機化合物之方法開發
Development of Scattering Sensing Method for the Selective Detection of Volatile Organic Compound based on Zinc Oxide Nanoparticles
作者: 粘頌奇
Nien-Song-Chi
關鍵字: Volatile Organic Compound;散射;Zinc Oxide;Sensor;氧化鋅;揮發性有機化合物;方法開發;感測
出版社: 化學系所
引用: 參考文獻 1. Molhave, L.; Hensen, S. Atmospheric Environment. 1991, 25A, 1283-1293. 2. Spengler, J.D.; Samet, J.M.; McCarthy, J.F. Indoor Air Quality Handbook. First Edition, Published by McGraw-Hill Professional, New York, USA. 3. Tancrede, M. Atmospheric Environment. 1987, 21, 2187-2205. 4. Meulenberg , J. W.; Wijnker, A. G.; Vijverberg, P. M. Journal of Toxicology and Environmental Health A. 2003, 66, 1985–1998. 5. Yuko S.; Hideko, S. Journal of Risk Research. 2002, 5, 105–117. 6. Liompart, M.; Li, K.; Fingas, M. Talanta.1999, 48, 451-459. 7. Liompart, M.; Li, K.; Fingas, M. Journal of Chromatography A. 1998, 824, 53-61. 8. Michael, E.; Miller, J.; Stuart, D. Analytical Chemistry. 1999, 71, 23-27. 9. Chai, X.S.; Zhu, J.Y. Journal of Chromatography A. 1998, 779, 207-224. 10. Fustinoni, S.; Giampiccolo, R.; Buratti, M.; Colombi, A. Journal of Chromatography B. 1999, 723, 105-115. 11. Baratto, C.; Sberveglieri, G.; Onischuk, A.; Caruso, B.; Stasio, S. Sensors and Actuators B. 2004, 100, 261–265. 12. Mabrook, M.; Hawkins, P. Sensors and Actuators B. 2001, 75, 197-202. 13. Bhooloka Rao B. Materials Chemistry and Physics. 2000, 64, 62–65. 14. Xu, X.; Zheng, J.; Song, C. Energy & Fuels. 2005, 19, 2107-2109. 15. Zhu, Y.; Shi, J.; Zhang, Z.; Zhang, C.; Zhang, X. Analytical Chemistry. 2002, 74, 120-124. 16. Yang, J.; Chen, P.-Y. Analytical Science. 2002, 18, 555-560. 17. Yang, J.; Tasi, S.-S. Analytica Chimica Acta. 2002, 462, 235-244. 18. Skoog, D. A.; Holler, F. J.; Niemen, T. A. Principle of Instrumental Analysis. Fifth Edition, Saunders College Publishing, Orlando, FL, USA. 19. Yin, M.; Gu, Y.; Kuskovsky, I. L.; Andelman, T.; Zhu, Y.; Neumark, G. F.; Journal of American Chemical Society. 2004, 20, 637-645. 20. Guo, L.; Yang, S. Chemical Materials. 2000, 12, 2268-2274. 21. Windholz, M.; Merck Sharp and Dohme Research Laboratories Rahway, The Merck Index. Tenth Edition, New Jersey, USA. 22. Julia, W. P.; Zhengrong, R. T.; Neil, C. S.; Carolyn, M. M. Nano Letters. 2005, 5(1), 83-86. 23. Xia, H.L.; Tang, F.-Q. Journal of Physical Chemistry B. 2003, 107, 9175-9178. 24. Ye, C.; Fang, X. S.; Hao, Y.F.; Teng, X.M.; Zhang, L. Journal of Physical Chemistry B. 2005, 109, 19758-19765. 25. Zhu, Z.M.; Chen, T.-L.; Gu, Y.; Warren, J.; Richard, M.; Osgood, J. Chemical Materials. 2005, 17, 4227-4234. 26. Smith, S. M.; Schlegel, H. B. Chemical Materials. 2003, 15, 162-166. 27. Peng, Y.; Xu, A.W.; Deng, B.; Antonietti, M.; Collfen, H. Journal of Physical Chemistry B. 2006, 110, 2988-2993. 28. Oliveira, A.-P.; Hochepied, J.-F.; Grillon, F.; Berger, M.-H. Chemical Materials. 2003, 15, 3202-3207. 29. Shingo, H.; Kyosuke, M.; Makoto, K. Journal of Physical Chemistry B. 2004, 108, 4576-4578. 30. Zhu, Z.; Chen, T.-L.; Gu, Y.; Warren, J.; Richard, M.; Osgood, J. Chemical Materials. 2005, 17, 4227-4234. 31. Chen, B.J.; Sun, X.W.; Xu, C.X.; Tay, B.K. Physica E. 2004, 21, 103–107. 32. Lai, M.; Riley, D. J. Journal of Material Chemistry. 1997, 7, 1075-1084. 33. Li, M.; Zhai, J.; Liu, H.; Song, Y.; Jiang, L.; Zhu, D. Journal of Physical Chemistry B. 2003, 107, 9954-9957. 34. Wong, E.M.; Searson, P. C. Chemical Materials. 1999, 11, 1959-1961. 35. Zhang, Y.-S.; Wang, L.-H.; Liu, X.-H.; Yan, Y.; Chen, C.-Q.; Zhu, J. Journal of Physical Chemistry B. 2005, 109, 13091-13093. 36. Gulino, A.; Fragala, I. Chemical Materials. 2002, 14, 116-121. 37. Zhu, Y.-F.; Shi, J.-J.; Zhang, Z.-Y.; Zhang, C.; Zhang, X.-R. Analytical Chemistry. 2002, 74, 120-124. 38. Wang, R.-P.; Sleight, A.W. Chemical Mateirals. 1996, 8, 433-439. 39. He. J. H.; Lao, C. S.; Chen, L. J.; Davidovic, D.; Wang, Z. L. Journal of American Chemical Society. 2005, 127, 16376-16377. 40. Rao, G. S.; D. Rao, T. Sensors and Actuators B. 1999, 55, 166–169. 41. Cui, Y.; Wei, Q.; Park, H.-K.; Lieber, C. M. Science. 2001, 293, 17-28. 42. Xu, J.-Q.; Shun, Y.; Pan, Q.-Y.; Qin, J.-H. Sensors and Actuators B. 2000, 66, 161–163. 43. Guo, L.; Yang, S.; Yang, C.; Yu, P.; Wang, J.; Ge, W.; Wong, G. K. L. Chemical Materials. 2000, 12, 2268-2274. 44. Yang, J.; Deivaraj, T. C.; Too, H.-P.; Lee, J. Y. Langmuir. 2004, 20, 93-96. 45. Huang, G. G.; Wang, C.-T.; Tang, H.-T.; Huang, Y.-S.; Yang, J. Analytical Chemistry. 2006, 78, 2397-2404. 46. Ye, C.-H.; Fang, X.-S.; Hao, Y.-F.; Teng, X.-M.; Zhang, L. Journal of Physical Chemistry B. 2005, 109, 19758-19765. 47. Jimenez-Gonzalez, A. E.; Soto Urueta, J. A.; Suarez-Parra, R. Journal of Crystal Growth. 1998, 192, 430-438. 48. Bandyopadhyay, S.; Paul, G. K.; Roy, R.; Sen, S. K.; Sen, S. Material Chemical Physics. 2002, 74, 83-91. 49. Janotta, M.; Rudolph, D.; Kueng, A.; Krantz, C.; Voraberger, H.-S.Waldhauser, W.; Mizaikoff, B. Langmuir. 2004, 20, 8634-8640. 50. Kunat, M.; Girol, St. G.; Burghaus, U.; Woll, Ch. Journal of Physical Chemistry B. 2003, 107, 14350-14356. 51. Mendes, L. S.; Oliveira, F. C. C.; Suarez, P. A. Z.; Rubim, J. C. Analytica Chimica Acta. 2003, 493, 219-231. 52. Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q. Analytical Chemistry. 2003, 75, 2517-2521. 53. Li, J.; Lu, Y.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Nano Letters. 2003, 3, 929-933. 54. Kong, J.; Franklin, N.-R.; Zhou, C.; Chapline, M.-G.; Peng, S.; Cho,K.; Dai, H. Science. 2000, 287, 622-625. 55. Lin, H-M.; Tzeng, S.-J.; Hsian, P-J.; Tsai, W.-L. Nano Structured Materials. 1998, 10, 465-472. 56. Pan, M.; Guo, X.; Cai, Q.; Li, G.; Chen, Y. Sensors and Actuators A. 2003, 108, 258-262. 57. Lahav, M.; Shipway, A.-N.; Willner, I.; Nielsen, M.-B.; Stoddart, J.-F. Journal of Electroanalytical Chemistry. 2000, 482, 217-221. 58. Curri, M.-L.; Agostiano, A.; Leo, G.; Mallardi, A.; Cosma, P.; Monica, M.-D. Materials Science and Engineering C. 2002, 22, 449-458. 59. Ansari, S.-G.; Boroojerdian, P.; Sainkar, S.-R.; Karenkar, R.-N.; Aiyer, R.-C.; Kulkarni, S.-K.; Thin Solid Films. 1997, 295, 271-280. 60. Kubitschko, K.; Spinke, J.; Bruckner, T.; Pohl, S.; Oranth, N. Analytical Biochemistry. 1997, 253, 112-120. 61. Kolmakove, A.; Zhang, Y.; Cheng, G.; Moskovits, M. Advanced Materials. 2003, 15, 997-1000. 62. Li, C.; Zhang, D.; Liu, X.; Han, S.; Tang, T.; Han, J. Applied Physics Letters. 2003, 82, 1613-1615.
摘要: 
摘要
本研究之目地在建立快速與簡易之揮發性有機化合物之感測器,透過將氧化鋅修飾於感測元件後,感測元件之散射率會隨著樣品濃度變化,經由散射率大小可建立出靈敏且具選擇性之感測器。感測裝置分成兩組,封閉式及開放式感測裝置,分別對雷射光的入射角度、氧化鋅覆膜厚度、鍛燒溫度、鍛燒時間,感測元件的種類、氧化鋅的活性及不同物種和濃度效應的影響做最佳化的探討。結果顯示氧化鋅奈米粒的製備之最佳條件400 ℃鍛燒1小時,其顆粒大小約介於20 至30 nm間。以氧化鋅修飾之感測器感測多種揮發性有機氣體顯示,氧化鋅對於高極性的樣品,特別是醇類具有特殊的選擇性,其偵測極限可以到50 ppmv以下,而氧化鋅的活性可維持一週左右,而氧化鋅結合散光法的方式做感測時,最佳雷射光的入射角度為25度~30度之間。

另外,為了改善氧化鋅只能測醇類的限制,本研究亦將錸金屬孔洞性分子MS113引入氧化鋅散光系統,藉由此分子對苯環類化合物之特殊選擇性,改進感測性質。經由長鏈的碳十二醇去活性12小時之後,可以成功的感測氯苯(Chlorobenzene),且乙醇訊號的干擾可以有效的去除,顯示以氧化鋅奈米粒做基材,再覆膜不同種類且具有特殊選擇性的分子,可以成功地感測其他種類的揮發性有機化合物。

Abstract
The goal of this research is to develop a simple and selective optical sensor for detection of volatile organic compounds (VOCs). By modification of zinc oxide nanoparticles (ZnO NPs) on the surface of sensing element, a large change of the scattering property was observed and used for quantitative purpose. To facilitate the detection of VOCs by this proposal method, two devices were designed and constructed including a static detection system and a flow cell device. To produce most suitable ZnO NPs for scattering type of sensors, both calcination temperature and calcination time were examined. Results indicated that with a calcination temperature of 300 ℃ and calcination time around 1 hr, a sensitive and selective scattering sensor could be obtained. By examination the signals from VOCs, ZnO sensor was extremely sensitive for alcohols. Based on three times of noise level, the detection limit in detection of alcohols is around 50 ppmv.
To further utilize the property of high surface-to-volume of ZnO NPs for sensing purpose, a synthesized molecule (named MS113), which exhibits high selectivity for aromatic compounds, was used to treat the surface of ZnO NPs. With proper treatment of MS113, the modified sensor provided high selectivity for chlorobenzene. Also, ZnO NPs in adsorption of alcohols was completely suppressed. In general, the detection speed is highly fast (within few minutes) and the detection limit for chlorobenzene can be around ca. 40 ppmv.
URI: http://hdl.handle.net/11455/16420
其他識別: U0005-0308200616510300
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.