Please use this identifier to cite or link to this item:
標題: 基材及添加物對紅外光放射之影響行為探討
Effect of Substrate and Additive on Infrared Emission Spectroscopy
作者: 陳宏毅
Chen, Hom-Yi
關鍵字: Infrared Emission Spectroscopy;紅外光放射光譜;substrate;surface-enhanced;基材;表面增強效應
出版社: 化學系所
引用: (1)Goody, R.M.; Yung, Y.L. ‘Atmospheric Radiation: Theoretical Basis 1’, Oxford University Press, London, 1989, 29-31. (2)Durana, J. F. Polymer, 1979, 20, 1306-1307. (3)Chiang, S.; Tobin, R. G.; Richards, P. L. J.Vac. Sci. Technol. 1984, A.2(2), 1069-1074. (4)Tobin, R. G.; Richards, P. L. Surf. Sci. 1987, 179, 387-403. (5)Handke, M.; Harrick, N. J. Appl. Spectrosc. 1986, 40(3), 401-405. (6)Pigeat, P.; Pacia, N.; Weber, B. Surf. Interface Anal. 1992, 18, 571-576. (7)Bodis, J.; Nemeth, Cs.; Mink, J.; Keresztury, G.; Tetenyi, P. J. Mol. Struct. 1997, 410-411, 179-182. (8)Jones, R. W.; Meglen, R. R.; Hames, B. R. Anal. Chem. 2002, 74, 453-457. (9)Zhang, J.; Goldstein, D. B.; Varghese, P. L.; Gimelshein, N. E.; Gimelshein, S. F.; Levin, D. A. Icarus, 2003, 163, 182-197. (10)Mendillo, M.; Wilson, J.; Spencer, J.; Stansberry, J. Icarus, 2004, 170, 430-442. (11)Bernath, P. F. Chem. Soc. Rev. 1996, 25(2), 111-116. (12)Heland, J.; Schaefer, K.; Haus, R. Proc. SPIE-Int. Soc. Opt. Eng. 1995, 2506, 62-71. (Air Pollution and Visibility Measurement). ( 13 ) Heland, J.; Schaefer, K.; Haus, R. Mitt.-Dtsch. Forschungssanst. Luft-Raumfahrt 1994, 94-06, 88-93. (Impact of Emissions from Aircraft and Spacecraft Upon the Atmosphere). (14)Taylor, L. H.; Suhre, D. R.; Mech, S. J. Proc. Annu. ISA Anal. Div. Symp. 1996, 29, 155-219. (15)Farmer, C. B.; Carli, B.; Bonetti, A.; Carlotti, M.; Dinelli, B. M.; Fast, H.; Evans, W. F. J.; Louisnard, N.; Alamichel, C. J. Atmos. Chem. 1990, 10(2), 237-272. (16)Becker, E.; Notholt, J. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3106, 154-162. (Spectroscopic Atmospheric Monitoring Techniques). (17)Kimpel, B. M.; Schulz, H.-J. Phys. Rev. B, 1991, 43, 9938-9940. (18)Markham, J. R.; Kinsella, K.; Carangelo, R.M.; Brouillette, C. R.; Carangelo, M. D.; Best, P. E.; Solomon, P. R. Rev. Sci. Instrum., 1993, 64, 2515-2522. (19)Hvistendahl, J.; Rytter, E.; Oye, H. A. Appl. Spectrosc. 1983, 37, 182-187. (20)Scurlock, R. D.; Ogilby, P. R. J. Phys. Chem., 1987, 91, 4599-4602. (21)Vassallo, A. M.; Cole-Clarke, P. A.; Pang, L. S. K.; Palmisano, A. J. Appl. Spectrosc., 1992, 46, 73-78. (22)Vassallo, A. M.; Finnie, K. S. Appl. Spectrosc., 1992, 46, 1477-1482. (23)Bates, J. B.; Boyd, G. E. Appl. Spectrosc., 1973, 27, 204-208. (24)Sullivan, D. H.; Conner, W. C.; Harold, M. P. Appl. Spectrosc., 1992, 46, 811-818. (25)Sullivan, D. H.; Harold, M. P.; Conner, W. C. J. Catal., 1998, 178, 108-118. (26)Korányi, T. I.; Mihály, J. J. Phys. Chem. A, 2006, 110, 1817-1823. (27)Fleischmann, M.; Hendre, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163-169. (28)Harstein, A.; Kirtley, J. R.; Tsang, J. C. Phys. Rev. Lett. 1980, 45(3), 201-204. (29)Osawa, M.; Ikeda, M. J. Phys. Chem. 1991, 95, 9914-9919. (30)Porter, L. A.; Jr.; Choi, H. C.; Ribbe, A. E.; Buriak, M. J. Nano Lett. 2002, 2, 1067-1071. (31)Lide, D. R. Handbook of Chemistry and Physics 1999-2000, 80th, 12-192-12-194. (32) (33) (34)Iijima, S. Nature. 1991, 354, 56-58. (35)Kyeong, Y. J. J. Mater. Sci. Lett. 1997, 16, 1848-1849. (36)Huang, G. G.; Wang, C. T.; Tang, H. T.; Huang, Y. S.; Yang, J. Anal. Chem. 2006, 78, 2397-2404. (37)高逢時, 科學發展, 2005, 386 期, 66-71. (38)Haruta, M. Chemical Record, 2003, 3(2), 75-87.
紅外線放射光譜(Infrared Emission Spectroscopy)可輕易測得固體材料之表面化學資訊,因此無論在表面分析或催化反應上皆為十分重要之分析技術,但此測量法中受到基材輻射與基材之熱傳性質影響甚巨,因此為改進現有之紅外線放射光譜法,本研究中深入探討基材之物性對紅外光放射強度之影響,藉由更換不同的基材,來觀察基材對於紅外光放射之影響進而達到有效測取之目的。為瞭解基材性質之影響,研究中利用傳統加熱法與熱氣加熱法來測取基材表面指標分子之紅外光放射訊號強度之方式,達到比較與瞭解熱導度對訊號大小之影響。研究中,聚苯乙烯因據有特殊之放射訊號因此選為指標分子,使用之基材包括Al、Cu、Zn、Sn、Pb、Ag、Ge 與ZnSe 等金屬半導體材料。實驗之結果顯示,導熱性低之材料較適合當做熱氣加熱法之基材,如硒化鋅可提供80% 之訊號強度。而傳統加熱法中,基材之材質對訊號據有較低之影響力,測試之材料獲得之訊號相當接近。其他會影響射訊號之因子,本研究亦詳加探討如基材長度、加熱溫度、基材表面修飾效應以及應用性等。結果顯示,基材之長度(或厚度)對傳統加熱法有較大之影響,但對熱氣加熱法影響較低。經最佳化系統後,此方法可以有效測取單層樣品,其樣品施加量可低於1 μg/cm2。

Infrared Emission Spectroscopy (IRES) is a powerful analytical technique and commonly used for surface characterizations and catalytic reactions. To increase the applicability of IRES, the effects of substrates with and without surface treatments to the infrared emission were investigated. Two methods to generate the IR emission were compared in this work including hot-air-jet heating method and conventional heating method. Substrates of Al, Cu, Zn, Su, Pb, Ag, Ge, and ZnSe were studied their influences to IR emittance using polystyrene (PS) as probe molecule. These results indicated that the low thermal conductivity of metal substrate is more suitable as substrate in the
hot-air-jet heating method. While in the traditional heating method, the materials of the substrates did not affect the IR emittances significantly. The studies on the effects of the thickness of the substrates and the heating
temperature indicated that the thickness of substrates has significant influences on the traditional heating method but only has slight influences on the hot-air-jet method. By surface treated with nanomaterials, the emittance of IR
radiations is largely reduced for the hot-air-jet method but less influenced in conventional heating method. This result indicated that the monitoring the intermediates in catalysis prefers conventional heating method. When surface
of the substrates was treated with silver nanoparticles, surface enhanced infrared emission spectra were observed. This result indicated that emission spectroscopy is potentially useful for surface analyses. In general, with a
surface coverage of 1 μg/cm2, surface enhanced infrared emission spectra can be detected easily.
其他識別: U0005-0308200620224400
Appears in Collections:化學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.