Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1644
標題: 六自由度微定位平台之設計與分析
Design and Analysis of Six Degree-of-Freedom Precision Positioning Stage
作者: 李ㄧ民
Li, Yi-Min
關鍵字: six-degrees-of-freedom positioning stage;六自由度定位平台;flexural structure;Check List;piezoelectric actuator;撓性結構;檢核表;壓電致動器
出版社: 機械工程學系所
引用: [1] Yuan, Z. D., Takahito, O., and Masayoshi, E. , “Piezoactuator-integrated monolithic microstage with six degrees of freedom,” Proceeding of The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, 8-12 June 2003. [2] Patrascu, M., and Stramigioli, S., “Stick-slip actuation of electrostatic stepper micropositioners for data storage-the μwalker,” Proceeding of the 2005 International Conference on MEMS, NANO and Smart Systems, 24-27 July 2005, pp. 81 – 86. [3] Tenzer, P.E., and Mrad, R.B., “A systematic procedure for the design of piezoelectric inchworm precision positioners,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 2, June 2004, pp. 427 – 435. [4] Gong, Z., Ho, H. L., Yang, G., and Lin, W., “Experimental-model-based precision control of a piezoelectric actuated flexure stage,” Proceeding of the International Conference on Automation Science and Engineering, 1-2 August 2005, pp. 124 – 129. [5] Purwanto, E., and Toyama, S., “Development of an ultrasonic motor as a fine-orienting stage,” IEEE Transactions on Robotics and Automation, Vol. 17, No. 4, August 2001, pp. 464 – 471. [6] Tenzer, P.E., and Mrad, R.B., “A systematic procedure for the design of piezoelectric inchworm precision positioners,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 2, June 2004, pp. 427 – 435. [7] 井澤實著,杜光宗編譯,「精密定位技術及其設計技術」,建宏出版社,台北市,1992。 [8] Merlet, J. P., “Optimal design for the micro parallel robot MIPS,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2, 11-15 May 2002, pp. 1149 – 1154. [9] Verma, S., Kim, W.J., and Gu, J., “Six-axis nanopositioning device with precision magnetic levitation technology,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 2, June 2004, pp. 384 – 391. [10] Kawato, Y., and Kim, W.J., “A novel multi-DOF precision positioning methodology using two-axis hall-effect sensors,” Proceedings of the American Control Conference, 8-10 June 2005, pp. 3042 – 3047. [11] Kuo, S. K. and Menq, C. H., “Modeling and control of a six-axis precision motion control stage”, IEEE/ASME Transactions on Mechatronics, Vol. 10, No. 1, Feb 2005, pp. 50 – 59. [12] Chao, D., Zong, G., and Liu, R., “Design of a 6-dof compliant manipulator based on serial-parallel architecture,” Proceedings of the IEEE/ASME 2005 International Conference on Advanced Intelligent Mechatronics Monterey, California, USA, 24-28 July 2005. [13] 莊錦煌,「六軸微動平台之靜態誤差探討」,碩士論文,中原大學機械工程學系研究所,中華民國九十三年七月。 [14] 蔡奇陵,「六自由度超精密奈米定位平台研製」,碩士論文,台灣大學機械工程學系研究所,中華民國八十九年七月。 [15] Gonda, S., Kurosawa, T., and Tanimura, Y., “Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology,” Measurement Science Technology, Vol. 10, 1999, pp. 986-993. [16] Yeh, Y.C., Yen, J.Y., Peng, Y.H., and Lee, J.F., “Design for control of a flexure jointed optical servo scanning platform,” Proceeding of the IEEE International Conference on Mechatronics, 10-12 July 2005, pp. 616 – 621. [17] Sandoz, P., “Nanometric position and displacement measurement of the six degrees of freedom by means of a patterned surface element,” Applied Optics, Vol. 44, No. 8, 2005, pp. 1449 – 1453. [18] Vorndran, S., “Low-inertia pzt nanopositioning stages with direct motion metrology for scanning microscopy, semiconductor manufacturing/inspection”, NanoAutomation TechNote, Polytec PI, 2002, pp. 1-3. [19] 楊家昇,「精密進給系統驅動機構之設計研究」,碩士論文,中興大學機械研究所,中華民國九十三年七月。 [20] Kang, B.H., Wen, J.T.-Y., Dagalakis, N.G., and Gorman, J.J, “Analysis and design of parallel mechanisms with flexure joints,” IEEE Transactions on Robotics, Vol. 21, No. 6, Dec. 2005, pp.1179 – 1185. [21] Paros, J.M.,and Weisbord, L., “How to design flexure hinge”, Machine Design, Vol. 37, Nov. 1965. [22] Physik Instrumente, Micropositioning,Nanopositioning, Nano-automation, 2001. [23] Niaritsiry, T.-F., Fazenda, N., and Clavel, R., “Study of the sources of inaccuracy of a 3 dof flexure hinge-based parallel manipulator,” Proceeding of the IEEE Internationa1 Conference on Robotic & Automation, New Orleans, L.A., April 2004. [24] 謝龍昌、曾錦煥、趙志揚、劉霆、馮展華、王以莊,「創意設計理論與實務—機械類教材」,教育部八十九年度委託研究計劃,中華民國九十年六月。 [25] 周卓明,「創意思考訓練」,全華出版社,台北市,2005。 [26] 陳龍安,「創造思考教學」,師大書苑,台北市,1998。 [27] 山口善民,「創造思考教學」,經典傳訊文化出版社,台北市,民國93年 [28] Gere, J.M., “Mechanics of Materials”, Brook/Cole, California, 2001, pp. 899. [29] 李玉山,「蚇蠖蟲式定位平台的最佳化設計與分析」,碩士論文,中興大學機械研究所,中華民國九十四年七月。 [30] Physic Instrument, NanoPositioning, US Edition Catalog, 2001. [31] IOtech, DaqBoard/2000 and /2000c Series User’s Manual, April, 2002. [32] 李滄洲,「應用單晶片於精密定位系統之研究」,碩士論文,中興大學機械研究所,中華民國九十二年七月。
摘要: 
本研究是針對多自由度目的而去設計出一個六自由度定位平台,採用壓電材料、配合撓性結構來達到定位效果,在本研究中利用檢核表來激發新的構想,克服平台結構的問題,設計一個新的機構,整體設計乃為一體機構,無需組裝。
本論文的研究步驟主要可分為三個階段,(1)定位平台的概念設計、(2)定位平台的理論分析、(3)定位平台的實體實驗。在設計分析流程中,首先根據設計需求而配合檢核表產生定位平台的概念設計,再針對定位平台的撓性結構之構型分析其靜態與動態特性,最後將理論分析與ANSYS有限元素分析、自然頻率響應實驗的結果三者比較,藉此以驗證整個理論分析流程的正確性並設計出在X方向之最大位移為13.8μm、Y方向之最大位移為13.68μm、Z方向之最大位移為18.58μm、θ之最大旋轉量為42.4μrad、φ之最大旋轉量為351.36μrad、ψ之最大旋轉量為330.44μrad之定位平台。

The purpose of this research is to design a six degree-of-freedom positioning stage. By using flexure hinge and piezoelectric actuator, this stage can achieve precision positioning with nanometer resolution. The Checklist method was used to solve the problem embedded in the conventional precision stage and generate a new conceptual design. We designed a positioning stage in monolithic mechanism with six degree-of-freedom.
In this thesis, the functional requirements were discussed firstly. A conceptual design was followed according to these functional requirements. Then a mathematical model of the stage was constructed. Finite element analysis with experiment was conducted to verify the design. The experiment results show that the stage can achieve a maximum displacement 13.8μm in X axis; 13.68μm in Y axis; and 18.58μm in Z axis. The stage can also achieve a maximum rotation 42.4 μrad around X axis; 351.36μrad around Y axis; and 330.44 μrad around Z axis.
URI: http://hdl.handle.net/11455/1644
其他識別: U0005-1908200613392400
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.