Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16440
標題: Measurements and simulation of local scour at nonuniform cylindrical piers
非均勻圓柱橋墩局部沖刷之試驗與模擬
作者: Shi, Zhong-Zhi
石中智
關鍵字: 馬蹄形渦流;vortex;非均勻圓柱橋墩;局部沖刷;non-uniform piers;local scour
出版社: 土木工程學系所
引用: 1.林呈,「本省西部重要河川橋樑橋基災害分析與橋基保護工法資料庫系統之建立」,交通部運輸研究所專題研究計畫成果報告, (1998)。 2.周憲德、吳沛倫、王新貴、張藝馨,「裸露圓柱橋基之局部沖刷分析」,中國土木水利工程學刊,第十四卷,第四期,(2002)。 3. 陳樹群、王敦儀、周憲德、嚴曉嘉,「上鉤式頸環對橋墩沖刷減緩之功效」,臺灣水利,第五十五卷,第三期,(2007) 4.張文鎰,「圓形橋墩局部沖刷之模擬與試驗驗證」,博士論文,國立台灣大學土木工程研究所,(2002)。 5.張天峰,「定量流非均勻橋墩之沖刷歷程室內試驗與模擬」,碩士論文,國立中興大學土木工程研究所,(2007)。 6.張海燕,「河流演變工程學」,科學出版社,(1990)。 7.張藝馨,「不均勻圓形橋墩之局部沖刷研究」,碩士論文,國立中央大學土木工程研究所,(2000)。 8.錢寧,「泥泥運動力學」,科學出版社,(1990)。 9.鄭暐曦,「變量流流況下非均勻圓柱型橋墩局部沖刷之研究」,碩士論文,國立中興大學土木工程研究所,(2005)。 10.Chang, W. Y., Lai, J. S., and Yen, C. L., “Evolution of scour depth at circular bridge piers.” J. Hydr. Eng., Vol. 130, No. 9, pp. 905~913, (2004). 11.Chiew, Y. M., “Mechanics of Riprap Failure at Bridge Piers” J. Hydr. Engrg., Vol. 121, No. 9, pp. 635~643, (1995). 12.Dargahi, B., “Controlling Mechanism of Local Scouring” J. Hydr. Engrg., Vol. 116, No. 10, pp. 1197~1214, (1990). 13.Ettema, R., “Scour at Bridge Piers” Report. No. 216, School of Engineering., University of Auckland., Auckland., New Zealand, (1980). 14.Jain, S. C., and Fischer, E. E., “Scour Around Bridge Piers at High Velocity” J. Hydr. Engrg., Vol. 106, No. 11, pp. 1827~1842, (1980). 15.Jain, S. C., “Maximum Clear-Water Scour around Circular Piers” J. Hydr. Engrg., Vol. 107, No. 5, pp. 611~626, (1981). 16.Jones, J. S., Kilgore, R. T., and Mistichelli M. P., “Effects of footing location on bridge pier” J. Hydr. Engrg., Vol. 118, No. 2, pp.280-290, (1992). 17.Kothyari, U. C., Garde, R. J., and Ranga Raju, K. G., “Leve-bed scour around cylindrical bridge piers” J. Hydr. Engrg., Vol. 30, No. 5, pp.701-715, (1992). 18.Kothyari, U. C., Garde, R. J., and Ranga Raju, K. G., “Temporal variation of scour around circular bridge piers” J. Hydr. Engrg., Vol. 118, No. 8, pp.1091-1106, (1992). 19.Jones, J. S., Kilgore, R. T., and Mistichelli, M. P., “Effects of footing location on bridge pier” J. Hydr. Engrg., Vol. 118, No. 2, pp. 280~290, (1992) 20.Melville, B. W., and Sutherland, A. J., “Design Method for Local Scour at Bridge Piers” J. Hydr. Engrg., Vol. 114, No. 10, pp. 1210~1226, (1988). 21.Melville, B. W., “Pier and Abutment Scour:Integrated Approach” J. Hydr. Engrg., Vol. 123, No. 2, pp. 125~136, (1997). 22.Melville, B. W., and Coleman, S. E., “Bridge Scour” Water Resources Publication., LLC., Highlands Ranch, Colorado, USA, (2000). 23.Melville, B. W., and Raudkivi, A. J., “Effects of Foundation Geometry on Bridge Pier Scour” J. Hydr. Engrg., Vol. 122, No. 4, pp. 203~209, (1996). 24.Melville, B. W., and Chiew, Y. M., “Time Scale for Local Scour at Bridge Piers” J. Hydr. Engrg., Vol. 125, No. 1, pp. 59~65, (1999). 25.Mia, M. F., and Nago, H., “Design Model of Time-Dependent Local Scour at Circular Bridge Pier” J. Hydr. Engrg., Vol. 129, No. 6, pp. 420-427, (2003). 26.Paintal, A. S. (1971)., “A stochastic model of bed load transport. “J. Hydr. Engrg., Vol. 9, NO. 4, pp. 91~109, (1971). 27.Parola, A. C., Mahavadi, S. K., Brown, B. M., and Khoury, A. El, “Effects of rectangular foundation geometry on local pier scour,” J. Hydr. Engrg., Vol. 122, NO. 1, pp. 35~40, (1996). 28.Raudkivi, A. J., and Ettema, R., “Effect of Sediment Gradation on Clear Water Scour” J. Hydr. Engrg., Vol. 103, No. 10, pp. 1209~1212, (1977). 29.Raudkivi, A. J., and Ettema, R., “Clear-Water Scour at Cylindrical Piers” J. Hydr. Engrg., Vol. 109, No. 3, pp. 338~350, (1983). 30.Raudkivi, A. J., “Functional Trends of Scour at Bridge Piers” J. Hydr. Engrg., Vol. 112, No. 1, pp. 1~13, (1986). 31.Shen, H. W., and Schneider, V. R., and Karaki, S., “Local Scour Around Bridge Piers” J. Hydr. Engrg., Vol. 95, No. 6, pp. 1919~1940, (1969). 32.Yalin, M. S., “Mechanics of sediment transport” 2nd Ed., Pergamon, Oxford, England, (1977). 33.Yanmaz, A. M., and Altinbilek, H. D., ”Study of time-dependent local scour around bridge piers.” J. Hydr. Engrg., Vol. 117, No. 10, pp. 1247~1268, (1991).
摘要: 
台灣河川坡陡流急,每逢颱風豪雨河川水位迅速漲落,並造成上游集水區土壤沖蝕與崩塌,河川挾帶大量泥砂。繼九二一集集大地震後,近年來危橋事件屢見不鮮,辛樂克颱風(SINLAKU,2008)甚至發生后豐大橋斷橋事件,導致交通停擺影響經濟甚鉅。因此,橋墩沖刷之研究課題刻不容緩。
本研究針對清水沖刷之定量流及變量流流況,配合非均勻橋墩(即圓柱型橋墩位於圓柱型基礎之上)進行室內試驗與模擬。首先,在試驗研究方面,分別探討不同覆土深度與墩徑比,其所造成局部沖刷之差異,並提出平衡沖刷深度預估式。
在定量流沖刷模擬方面,本研究修改Mia and Nago (2003) 均勻橋墩沖刷模式,考慮墩前渦流與泥沙傳輸理論,針對定量流作用下未裸露之非均勻圓柱橋墩沖刷行為,提出一計算模式,以模擬其完整之沖刷歷程,並加入Melville (1996)之試驗資料進行模式之檢定與驗證,以提升模式之實用性。
此外,在變量流沖刷模擬方面,由試驗觀察得知變量流之非均勻橋墩沖刷行為,可從定量流之沖刷資料進行套疊。據此,本研究先行計算變量流歷線中各個時段之定量流沖刷結果,再利用不同流量沖刷體積套疊之概念,進行疊加模擬,以快速地模擬變量流墩前沖刷深度之歷程。

Many rivers in Taiwan have steep slope gradients and rapid flows. The flow stages usually vary rapidly during the typhoon or storm periods for these rivers, causing severe upstream watershed soil erosion, landslide and high river sediment concentration. Dangerous bridge events are common in Taiwan in recent years after the Chi-Chi Earthquakes. For example, the Houfeng Bridge failure due to Typhoon SINLAKU led to severe traffic and economical damages. Therefore, there is an urgent need to conduct bridge scour research.
In this study, different types of steady and unsteady flow hydrographs, with non-uniform piers were used to conduct the laboratory bridge scouring experiments. The variations of local scour depth with different exposure elevations and pier ratios were investigated in the experiments, and an equilibrium scour depth prediction equation was proposed.
In regard to the steady flow scour simulation, the Mia and Nago's (2003) model for the uniform pier was modified with consideration of the primary vortex concept and the volumetric sediment transport theory to simulate the entire scouring process at non-uniform piers with a discontinuous surface below the initial bed level. To increase the practicality of the model, Melville's (1996) laboratory data were included in the model verification and validation.
In addition, by analyzing experimental data with steady flows, a scheme is proposed to calculate the temporal variation of scour depth with unsteady flows. In general, the simulated results based on the proposed methods correspond well with the experimental data.
URI: http://hdl.handle.net/11455/16440
其他識別: U0005-1607201117445400
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.