Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16447
標題: 卜作嵐含量對預力混凝土梁剪力行為之影響
Effect of Pozzolan on Shear Behavior of Prestressed Concrete Beams
作者: 陳彥良
Chen, Yan-Liang
關鍵字: Prestressed;預力;Pozzolan;Shear Behavior;卜作嵐;剪力行為
出版社: 土木工程學系所
引用: 1. ACI 211, “ Standard Practice for Selecting Proportion for Normal, Heavy-Weight, and Mass Concrete, ” ACI211.1 Report, ACI Manual of Concrete Practice, Part 1, 1997. 2. 陳俊宏, “自充填混凝土梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國九十七年七月. 3. 謝宗憲, “自充填混凝土預力梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國九十六年七月. 4. 林為杰, “高工作度混凝土預力梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國九十六年七月. 5. Lin, C. H., and Lee, W. C. , “Shear Behavior of High-Workability Concrete Beams ”,ACI Structural Journal, V. 100, No. 5, September -October 2003, pp. 599-608. 6. Elzanaty , Ashraf H. ; Nilson, Arthur H. ; and Slate, Floyd O. , “Shear Capacity of Prestressed Concrete Beam Using High-Strength Concrete” ACI Journal, Proceeding V.83 , No.3 , May-June 1986 , pp.319-368. 7. Lin, C. H., and Lee, F. S., “Ductility of High-Performance Concrete Beams with High Strength Lateral Reinforcement,” ACI Structural Journal, V. 98, No. 4, July-August 2001, pp. 1-9. 8. 黃士庭, “鋼筋於自充填混凝土梁中握裹行為,” 碩士論文,國立中興大學土木工程研究所,民國九十二年七月. 9. 徐育邦, “高強度飛灰混凝土預力梁之剪力強度,” 碩士論文,國立中興大學土木工程研究所,民國八十二年六月. 10. 黃兆龍, “混凝土性質與行為第三版,” ,詹氏書局,民國86年. 11. 張裕閔,“含爐石混凝土之孔隙與強度關係,” 碩士論文,國立中興 大學土木工程研究所,民國九十五年七月. 12. 蔡壽楨, “含飛灰混凝土之孔隙與強度關係,” 碩士論文,國立中興大學土木工程研究所,民國九十四年一月. 13. 塗耕業, “水泥漿體添加卜作嵐材料之水化特性研究,” 碩士論文,國立中興大學土木工程研究所,民國九十六年六月. 14. 謝鎔任, “卜作嵐含量對混凝土梁剪力行為之影響,” 碩士論文,國立中興大學土木工程研究所,民國一百年一月. 15. 林士平, “不同流動性混凝土之圍束行為,” 博士論文,國立中興大學土木工程研究所,民國九十四年七月. 16. 黃兆龍, “卜作嵐混凝土使用手冊,” 中興工程顧問社出版,民國九十六年. 17. 范博翔, “高工作度混凝土預力梁之撓曲行為,” 碩士論文,國立中興大學土木工程研究所,民國九十五年七月. 18. Mark, K. J., and Julio, A. R., “ Minimum Shear Reinforcement in Beams with Higher Strength Concrete,” ACI Structural Journal, V. 86, No. 4, July-Aug. 1989, pp. 376-382. 19. Ferguson Phil M., “Reinforced Concrete Fundamentals , 3rd Edition,” pp. 85-94. 20. 黃柏皓, “粗骨材含量對混凝土梁剪力行為之影響,” 碩士論文,國立中興大學土木工程研究所,民國九十九年七月. 21. 張立法, “輕質自充填混凝土梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國九十七年七月. 22. 陳祈隆, “輕質自充填混凝土預力梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國九十六年七月. 23. ACI 318, “Building Code Requirements for Structural Concrete(ACI318-08)and Commentary(ACI 318-08)” , American Concrete Institute, 2008, 465 pp. 24. ACI Committee 224, “Control of Cracking in Concrete structures ,” ACI Journal, V. 65, No. 12, December 1972, pp. 717-752 . 25. 林甫人, “含鋼線網剪力筋預力梁之剪力行為,” 碩士論文,國立中興大學土木工程研究所,民國八十四年六月. 26. Mansur, M. A.; Wee, T. H.; and Chin, M. S., “Dervation of the Complete Strain-Stress Curves for Concrete in Compression” Magazine of Consrete Research. V.49, No.173, 1995, pp.289-290. 27. 謝熒倫, “自充填混凝土梁在高強度箍筋使用下之剪力強度測試與探討,” 碩士論文,國立交通大學土木工程研究所,民國九十一年六月. 28. Lin, C. H., and Lee, W. C. , “Shear Behavior of High-Workability Concrete Beams ”,ACI Structural Journal, V. 100, No. 5, September -October 2003, pp. 1-9. 29. 潘昞熹, “粗骨材含量對混凝土力學行為之影響,” 碩士論文,國立中興大學土木工程研究所,民國九十七年七月.
摘要: 
The purpose of this research is to investigate the shear behavior of prestressted beams with pozzolans. A total of 10 beam specimens were fabricated in this study. The compressive strength of concrete in 5 of the beams was 35 MPa, and that in the other 5 was 50 MPa. Two replacement ratios of cement with slag (10 % and 20 %), two replacement ratios of sand with fly ash (10 % and 20 %), and the other one is normal concrete. The test variables include concrete strength and the amount pozzolans. The results show that :

(1) The cracking shear strength, ultimate shear strength , member stiffness, shear ductility, and crack control capability, increase with the concrete strength.
(2) ACI code overstimates Vcw for all of specimens, due to the lower limit of dp , and use of actual dp leads to more accurate results.
(3) The cracking shear strength, ultimate shear strength , member stiffness, shear ductility, and crack control capability, decrease as the slag replacement increases; however the ultimate shear strength is not apparent in normal strength concrete beams.
(4) The cracking shear strength, member stiffness, shear ductility, and crack control capability, decrease with the fly ash replacement increases. However, the ultimate shear strength increases as the replacement of fly ash increases.
(5) Use of ACI code procedures to calculate λ is unconservative for beams with pozzalans. But it is conservative for normal concrete beams.

本研究主要探討卜作嵐含量對於預力混凝土梁在承受靜態載重作用下之剪力行為。試驗共製作十支梁,分成兩種設計強度,其中五支試體為普通強度(35 MPa),爐石取代水泥含量依序為10 %、20 %共兩支;飛灰取代細骨材含量依序為10 %、20 %共兩支;無添加卜作嵐材料之普通混凝土一支。另外五支梁試體之設計取代量部分亦相同,但在設計強度上以高強度(50 MPa)作為區別。試驗之變數為抗壓強度、卜作嵐含量。試驗結果可歸納如下:

(1) 試驗結果顯示,抗壓強度對兩種卜作嵐混凝土梁之剪力開裂強度、極限剪力強度、勁度、剪力延展性及裂縫控制能力均有正面貢獻。
(2) ACI規範對腹剪開裂強度的預測式對於大部分試體皆高估,乃因規範限制了dp下限為0.8倍的梁深,使用試驗實際的dp則可得較準確的預測。
(3) 爐石取代率增加時,對剪力開裂強度、極限剪力強度、勁度、裂縫控制能力、及剪力延展性有下降的趨勢;但在低強度時,爐石取代率的增加對於極限剪力強度之影響不明顯。
(4) 飛灰取代率增加時,對剪力開裂強度、勁度、裂縫控制能力及剪力延展性有下降的趨勢;但梁極限剪力強度隨著飛灰取代率增加而有上升的趨勢。
(5) 在λ值部分,隨著抗壓強度的提升使得λ值偏不保守。兩種卜作嵐混凝土梁所求得之λ平均值差異不大;但在普通混凝土梁之λ為1.50,顯示λ對於普通混凝土梁修正較為保守。
URI: http://hdl.handle.net/11455/16447
其他識別: U0005-1708201114521100
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.